General Description

The AAT1154 SwitchReg is a step-down switching converter ideal for applications where high efficiency, small size, and low ripple are critical. Able to deliver 3A with an internal power MOSFET, the current-mode controlled IC provides high efficiency. Fully internally compensated, the AAT1154 simplifies system design and lowers external parts count.

The AAT1154 is available in a Pb-free SOP-8 package and is rated over the -40°C to +85°C temperature range.

Features

- V_{IN} Range: 2.7V to 5.5V
- Fixed or Adjustable V_{OUT}: 1.0V to 4.2V
- 3A Output Current
- Up to 95% Efficiency
- Integrated Low On Resistance Power Switch
- Internally Compensated Current Mode Control
- 1MHz Switching Frequency
- Constant Pulse Width Modulation (PWM) Mode
- Low Output Ripple With Light Load
- Internal Soft Start
- Current Limit Protection
- Over-Temperature Protection
- SOP-8 Package
- -40°C to +85°C Temperature Range

Applications

- Cable/DSL Modems
- Computer Peripherals
- High Efficiency Conversion from 5V or 3.3V Supply
- Network Cards
- Set-Top Boxes

Typical Application

![Typical Application Diagram]
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FB</td>
<td>Feedback input pin. This pin must be connected to the converter output. It is used to set the converter output to regulate to the desired value.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground connection.</td>
</tr>
<tr>
<td>3</td>
<td>EN</td>
<td>Enable input pin. When connected high, the AAT1154 is in normal operation; when connected low, it is powered down. This pin should not be left floating.</td>
</tr>
<tr>
<td>4</td>
<td>VCC</td>
<td>Power supply: supplies power for the internal circuitry.</td>
</tr>
<tr>
<td>5, 8</td>
<td>VP</td>
<td>Input supply voltage for converter power stage.</td>
</tr>
<tr>
<td>6, 7</td>
<td>LX</td>
<td>Inductor connection pins. These pins should be connected to the output inductor. Internally, Pins 6 and 7 are connected to the drain of the P-channel switch.</td>
</tr>
</tbody>
</table>

Pin Configuration

![SOP-8 Pin Configuration Diagram]
Absolute Maximum Ratings\(^1\)

\(T_A = 25^\circ C\), unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC}, V_P)</td>
<td>VCC, VP to GND</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{LX})</td>
<td>LX to GND</td>
<td>-0.3 to (V_P + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{FB})</td>
<td>FB to GND</td>
<td>-0.3 to (V_{CC} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN})</td>
<td>EN to GND</td>
<td>-0.3 to (V_{CC} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Operating Junction Temperature Range</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>(V_{ESD})</td>
<td>ESD Rating(^2) - HBM</td>
<td>3000</td>
<td>V</td>
</tr>
</tbody>
</table>

Thermal Characteristics\(^3\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta_{JA})</td>
<td>Thermal Resistance</td>
<td>110</td>
<td>°C/W</td>
</tr>
<tr>
<td>(P_{D})</td>
<td>Maximum Power Dissipation ((T_A = 25^\circ C))(^4)</td>
<td>909</td>
<td>mW</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>Ambient Temperature Range</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
2. Human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin.
3. Mounted on a demo board (FR4, in still air).
4. Derate 9.1mW/°C above 25°C.
Electrical Characteristics

$V_{IN} = V_{CC} = V_S = 5V$, $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise noted. Typical values are at $T_A = 25^\circ C$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage Range</td>
<td></td>
<td>2.7</td>
<td>5.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Tolerance</td>
<td>$V_{IN} = V_{OUT} + 0.2V$ to $5.5V$, $I_{OUT} = 0A$ to $3A$</td>
<td>-5.0</td>
<td>5.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>Under-Voltage Lockout</td>
<td>V_{IN} Rising</td>
<td>2.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{UVLO(HYS)}$</td>
<td>Under-Voltage Lockout Hysteresis</td>
<td></td>
<td>1.2</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Supply Current</td>
<td>No Load, $V_{FB} = 0V$</td>
<td>630</td>
<td>1000</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown Current</td>
<td>$V_{EN} = 0V$, $V_{IN} = 5.5V$</td>
<td>1.0</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>$R_{DS(ON)}$</td>
<td>High Side Switch On Resistance</td>
<td>$T_A = 25^\circ C$</td>
<td>60</td>
<td>mΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>$I_{OUT} = 1A$</td>
<td>92</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{LOADREG}$</td>
<td>Load Regulation</td>
<td>$I_{LOAD} = 0A$ to $3A$</td>
<td>±2.6</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{LINEREG}/\Delta V_{IN}$</td>
<td>Line Regulation</td>
<td>$V_{IN} = 2.7V$ to $5.5V$</td>
<td>0.75</td>
<td>%/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{OSC}</td>
<td>Oscillator Frequency</td>
<td>$T_A = 25^\circ C$</td>
<td>1</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{EN(L)}$</td>
<td>Enable Threshold Low</td>
<td></td>
<td>0.6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{EN(H)}$</td>
<td>Enable Threshold High</td>
<td></td>
<td>1.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{SD}</td>
<td>Over-Temperature Shutdown Threshold</td>
<td></td>
<td>140</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{HYS}</td>
<td>Over-Temperature Shutdown Hysteresis</td>
<td></td>
<td>15</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Characteristics

Efficiency vs. Load Current
\(V_{IN} = 5V; \ V_{OUT} = 3.3V\)

R\(_{DS(ON)}\) vs. Temperature
\(V_{IN}\) values: 2.7V, 3.6V, 4.2V, 5V, 5.5V

Oscillator Frequency Variation vs. Supply Voltage

R\(_{DS(ON)}\) vs. \(V_{IN}\)
\(I_{DS} = 1A\)

Oscillator Frequency Variation vs. Temperature
\(V_{IN} = 5V\)

Enable Threshold vs. Input Voltage

Enable Threshold vs. Input Voltage
Typical Characteristics

Output Voltage vs. Temperature
\((I_{\text{OUT}} = 2A) \)

Line Regulation
\((V_{\text{OUT}} = 3.3V) \)

Over-Temperature Current vs. Input Voltage
\((V_{\text{OUT}} = 3.3V) \)

Load Regulation
\((V_{\text{IN}} = 5.0V; \ V_{\text{IN}} = 3.3V) \)

Non-Switching Operating Current vs. Temperature
\((\text{FB} = 0V) \)

Over-Temperature Shutdown Current vs. Temperature
\((V_{\text{OUT}} = 3.3V; \ V_{\text{IN}} = 5.0V; \ L = 1.5\mu H) \)
Typical Characteristics

Inrush and Output Overshoot Characteristics
(3A Load)

Inrush and Output Overshoot Characteristics
(No Load)

Output Ripple
(I_{OUT} = 3.0A; V_{OUT} = 3.3V; V_{IN} = 5.0V)

Output Ripple
(I_{OUT} = 3.0A; V_{OUT} = 3.3V; V_{IN} = 5.0V)

Tantalum Output Ripple
(I_{OUT} = 3.0A; V_{OUT} = 3.3V; V_{IN} = 5.0V)

Loop Crossover Gain and Phase
Typical Characteristics

Loop Crossover Gain and Phase

Gain (dB)

Phase (degrees)

Frequency (Hz)

120µF 6.3V Tantalum
Vishay P/N 594D127X96R3C2T

Transient Response

(I_{OUT} = 0 to 3.0A; V_{OUT} = 3.3V; V_{IN} = 5.0V)

Output Voltage (top) (mV)

Inductor Current (bottom) (A)

Time (µs)

3x 100µF 6.3V Ceramic
TDK P/N C3325X5R0J107M

Output Voltage (top) (mV)

Inductor Current (bottom) (A)

Time (µs)

2x 100µF 6.3V Ceramic
TDK P/N C3325X5R0J107M

Output Voltage (top) (mV)

Inductor Current (bottom) (A)

Time (µs)

120µF 6.3V Tantalum
Vishay P/N 594D127X96R3C2T

Output Voltage (top) (mV)

Inductor Current (bottom) (A)

Time (µs)
Applications Information

Main Control Loop
The AAT1154 is a peak current mode step-down converter. The inner wide bandwidth loop controls the inductor peak current. The inductor current is sensed as it flows through the internal P-channel MOSFET. A fixed slope compensation signal is then added to the sensed current to maintain stability for duty cycles greater than 50%. The inner loop appears as a voltage-programmed current source in parallel with the output capacitor.

The voltage error amplifier output programs the current loop for the necessary inductor current to force a constant output voltage for all load and line conditions. The feedback resistive divider is internal, dividing the output voltage to the error amplifier reference voltage of 1V. The error amplifier has a limited DC gain. This eliminates the need for external compensation components, while still providing sufficient DC loop gain for good load regulation. The crossover frequency and phase margin are set by the output capacitor value.

Duty cycle extends to 100% as the input voltage approaches the output voltage. Thermal shutdown protection disables the device in the event of a short-circuit or overload condition.

Soft Start/Enable
Soft start controls the current limit when the input voltage or enable is applied. It limits the current surge seen at the input and eliminates output voltage overshoot.

When pulled low, the enable input forces the device into a low-power, non-switching state. The total input current during shutdown is less than 1μA.

Power and Signal Source
Separate small signal ground and power supply pins isolate the internal control circuitry from switching noise. In
addition, the low pass filter R1 and C3 (shown in Figure 1) filters noise associated with the power switching.

Current Limit and Over-Temperature Protection

Over-temperature and current limit circuitry protects the AAT1154 and the external Schottky diode during overload, short-circuit, and excessive ambient temperature conditions. The junction over-temperature threshold is 140°C nominal and has 15°C of hysteresis. Typical graphs of the over-temperature load current vs. input voltage and ambient temperature are shown in the Typical Characteristics section of this document.

Inductor

The output inductor is selected to limit the ripple current to 20% to 40% of full load current at the maximum input voltage. Manufacturer’s specifications list both the inductor DC current rating, which is a thermal limitation, and the peak current rating, which is determined by the inductor saturation characteristics. The inductor should not show any appreciable saturation under normal load conditions. During overload and short-circuit conditions, the inductor can exceed its peak current rating without affecting converter performance. Some inductors may have sufficient peak and average current ratings yet result in excessive losses due to a high DC resistance (DCR). The losses associated with the DCR and its effect on the total converter efficiency must be considered.

For a 3A load and the ripple current set to 30% at the maximum input voltage, the maximum peak-to-peak ripple current is 0.9A. Assuming a 5V ±5% input voltage and 30% ripple, the output inductance required is:

\[
L = \frac{V_{\text{OUT}}}{I_{\text{OUT}} \cdot k \cdot F_S} \cdot \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN(MAX)}}}\right)
\]

\[
= \left(\frac{3.3V}{3A \cdot 0.3 \cdot 1MHz}\right) \cdot 1 - \left(\frac{3.3V}{5.25V}\right)
\]

\[
= 1.36\mu\text{H}
\]

The factor “k” is the fraction of the full load (30%) selected for the ripple current at the maximum input voltage.

The corresponding inductor RMS current is:

\[
I_{\text{RMS}} = \sqrt{\left(I_O^2 + \Delta I^2\right)/12} = I_O = 3A
\]

\(\Delta I\) is the peak-to-peak ripple current which is fixed by the inductor selection above. For a peak-to-peak current of 30% of the full load current, the peak current at full load will be 115% of the full load. The 1.5\(\mu\)H inductor selected from the Sumida CDRH6D38 series has a 11mΩ DCR and a 4.0A DC current rating with a height of 4mm. At full load, the inductor DC loss is 99mW for a 1% loss in efficiency.

![Figure 1: 3.3V, 3A Output.](image-url)
Schottky Freewheeling Diode

The Schottky average current is the load current multiplied by one minus the duty cycle. For V_{IN} at 5V and V_{OUT} at 3.3V, the average diode current is:

$$I_{AVG} = I_D \cdot \left(1 - \frac{V_O}{V_{IN}}\right) = 3A \cdot \left(1 - \frac{3.3V}{5.0V}\right) = 1A$$

With a 125°C maximum junction temperature and a 120°C/W thermal resistance, the maximum average current is:

$$I_{AVG} = \frac{T_{J(MAX)} - T_{AMB}}{\theta_JA \cdot V_{FWD}} = \frac{125°C - 70°C}{120°C/W \cdot 0.4V} = 1.14A$$

For overload, short-circuit, and excessive ambient temperature conditions, the AAT1154 enters over-temperature shutdown mode, protecting the AAT1154 and the output Schottky. In this mode, the output current is limited internally until the junction temperature reaches the temperature limit (see over-temperature characteristics graphs). The diode reverse voltage must be rated to withstand the input voltage.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Voltage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diodes Inc.</td>
<td>B340LA</td>
<td>0.45V @ 3A</td>
</tr>
<tr>
<td>ROHM</td>
<td>RB050L-40</td>
<td>0.45V @ 3A</td>
</tr>
<tr>
<td>Micro Semi</td>
<td>5820SM</td>
<td>0.46V @ 3A</td>
</tr>
</tbody>
</table>

Table 1: 3A Surface Mount Schottky Diodes.

Input Capacitor Selection

The primary function of the input capacitor is to provide a low impedance loop for the edges of pulsed current drawn by the AAT1154. A low ESR/ESL ceramic capacitor is ideal for this function. To minimize stray inductance, the capacitor should be placed as closely as possible to the IC. This also keeps the high frequency content of the input current localized, minimizing the radiated and conducted EMI while facilitating optimum performance of the AAT1154. Proper placement of the input capacitor C_1 is shown in the layout in Figure 2. Ceramic X5R or X7R capacitors are ideal. The size required will vary depending on the load, output voltage, and input voltage source impedance characteristics. Typical values range from 1μF to 10μF. The input capacitor RMS current varies with the input voltage and the output voltage. It is highest when the input voltage is double the output voltage where it is one half of the load current.

$$I_{RMS} = I_O \cdot \sqrt{\frac{V_{O}}{V_{IN}} \cdot \left(1 - \frac{V_O}{V_{IN}}\right)}$$

A high ESR tantalum capacitor with a value about 10 times the input ceramic capacitor may also be required when using a 10μF or smaller ceramic input bypass capacitor. This dampens any input oscillations that may occur due to the source inductance resonating with the converter input impedance.

Output Capacitor

With no external compensation components, the output capacitor has a strong effect on loop stability. Larger output capacitance will reduce the crossover frequency with greater phase margin. A 200μF ceramic capacitor provides sufficient bulk capacitance to stabilize the output during large load transitions and has ESR and ESL characteristics necessary for very low output ripple. The RMS ripple current is given by:

$$I_{RMS} = \frac{1}{2 \cdot \sqrt{3} \cdot \frac{(V_{OUT} + V_{FWD}) \cdot (V_{IN} - V_{OUT})}{L \cdot F_S \cdot V_{IN}}}$$

For a ceramic output capacitor, the dissipation due to the RMS current and associated output ripple are negligible. Tantalum capacitors with sufficiently low ESR to meet output ripple requirements generally have an RMS current rating much greater than that actually seen in this application. The maximum tantalum output capacitor ESR is:

$$ESR \leq \frac{V_{RIPPLE}}{\Delta I}$$

where ΔI is the peak-to-peak inductor ripple current.

Due to the ESR zero associated with the tantalum capacitor, smaller values than those required with ceramic capacitors provide more phase margin with a greater loop crossover frequency.
Layout

Figures 2 and 3 display the suggested PCB layout for the fixed output AAT1154. The following guidelines should be used to help ensure a proper layout.

1. The connection from the input capacitor to the Schottky anode should be as short as possible.
2. The input capacitor should connect as closely as possible to VP (Pins 5 and 8) and GND (Pin 2).
3. C1, L1, and CR1 should be connected as closely as possible. The connection from the cathode of the Schottky to the LX node should be as short as possible.
4. The feedback trace (Pin 1) should be separate from any power trace and connect as closely as possible to the load point. Sensing along a high-current load trace can degrade DC load regulation.
5. The resistance of the trace from the load return to GND (Pin 2) should be kept to a minimum. This will help to minimize any error in DC regulation due to differences in the potential of the internal reference ground and the load return.
6. R1 and C3 are required in order to provide a cleaner power source for the AAT1154 control circuitry.

Thermal

The losses associated with the AAT1154 output switching MOSFET are due to switching losses and conduction losses. The conduction losses are associated with the $R_{DS(ON)}$ characteristics of the output switching device. At the full load condition, assuming continuous conduction mode (CCM), an accurate calculation of the $R_{DS(ON)}$ losses can be derived from the following equations:

$$P_{ON} = I_{RMS}^2 \cdot R_{DS(ON)}$$

$$I_{RMS} = \sqrt{\frac{I_o^2 + \Delta I^2}{12}} \cdot D$$

Internal switch RMS current

D is the duty cycle and V_F is the forward drop of the Schottky diode.

$$D = \frac{V_Q + V_F}{V_{in} + V_F}$$

ΔI is the peak-to-peak inductor ripple current.

A simplified form of calculating the $R_{DS(ON)}$ and switching losses is given by:

$$\Delta I = \frac{V_o}{L \cdot f} \cdot (1-D)$$

where I_Q is the AAT1154 quiescent current.

Once the total losses have been determined, the junction temperature can be derived. The thermal resistance (Θ_{JA}) for the SOP-8 package mounted on an FR4 printed circuit board in still air is 110°C/W.

$$T_J = P \cdot \Theta_{JA} + T_{AMB}$$

T_{AMB} is the maximum ambient temperature and T_J is the resultant maximum junction temperature.
Design Example

(See Figures 1 and 4 for reference)

- $I_{OUT} = 3A$
- $I_{RIPPLE} = 30\%$ of Full Load at Max V_{IN}
- $V_{OUT} = 3.3V$
- $V_{IN} = 5V \pm 5\%$
- $F_S = 1MHz$
- $T_{MAX} = 70^\circ C$

Inductor Selection

\[
L = \frac{V_{OUT}}{I_O \cdot k \cdot F_S \left(1 - \frac{V_{OUT}}{V_{IN}}\right)} = \frac{3.3V}{3A \cdot 0.3 \cdot 1MHz \left(1 - \frac{3.3V}{5V}\right)} = 1.25 \mu H
\]

Use standard value of 1.5\mu H

Sumida Inductor Series CDRH6D38.

\[
\Delta I = \frac{V_O}{L \cdot F_S \left(1 - \frac{V_O}{V_{IN}}\right)} = \frac{3.3V}{1.5\mu H \cdot 1MHz \left(1 - \frac{3.3V}{5.25V}\right)} = 0.82A
\]

\[
I_{PK} = I_{OUT} + \frac{\Delta I}{2} = 3A + 0.41A = 3.41A
\]

Efficiency vs. Load Current

![Graph](image)

Figure 4: 5V Input, 3.3V Output.

AAT1154 Junction Temperature

\[
P_{ON} = I_{O}^2 \cdot R_{DS(ON)} \cdot \frac{V_O}{V_{IN}} + \frac{I_{SW} \cdot F_S \cdot I_O + I_O}{2} \cdot V_{IN} = 3^2 \cdot 65m\Omega \cdot 3.3V + \frac{20ns \cdot 1MHz \cdot 3A + 750\mu A}{2} \cdot 5V = 0.539\text{ Watts}
\]

\[
T_{J(MAX)} = T_{AMB} + \Theta_{JA} \cdot P = 70^\circ C + 110^\circ C/W \cdot 0.54W = 129^\circ C
\]

Diode

\[
I_{DIODE} = I_O \cdot \left(1 - \frac{V_O}{V_{IN}}\right) = 3A \cdot \left(1 - \frac{3.3V}{5V}\right) = 1.02A
\]

\[
V_F = 0.35V
\]

\[
P_{DIODE} = V_F \cdot I_{DIODE} = 0.35V \cdot 1.01A = 0.354W
\]

Given an ambient thermal resistance of 120^\circ C/W from the manufacturer’s data sheet, $T_{J(MAX)}$ of the diode is:

\[
T_{J(MAX)} = T_{AMB} + \Theta_{JA} \cdot P = 70^\circ C + 120^\circ C/W \cdot 0.354W = 112^\circ C
\]

Output Capacitor

The output capacitor value required for sufficient loop phase margin depends on the type of capacitor selected.

For a low ESR ceramic capacitor, a minimum value of 200\mu F is required. For a low ESR tantalum capacitor, lower values are acceptable. While the relatively higher ESR associated with the tantalum capacitor will give more phase margin and a more dampened transient response, the output voltage ripple will be higher.

The 120\mu F Vishay 594D tantalum capacitor has an ESR of 85m\Omega and a ripple current rating of 1.48Arms in a C case size. Although smaller case sizes are sufficiently rated for this ripple current, their ESR level would result in excessive output ripple.
The ESR requirement for a tantalum capacitor can be estimated by:

\[
ESR \leq \frac{V_{\text{Ripple}}}{\Delta I} = \frac{100\text{mV}}{0.82\text{A}} = 121\text{m} \Omega
\]

\[
I_{\text{RMS}} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{(V_{\text{OUT}} + V_F) \cdot (V_{\text{IN}} - V_{\text{OUT}})}{L \cdot f_s \cdot V_{\text{IN}}}
\]

\[
= \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{3.65\text{V} \cdot 1.7\text{V}}{1.5\mu\text{H} \cdot 1\text{MHz} \cdot 5\text{V}} = 240\text{mArms}
\]

Two or three 1812 X5R 100uF 6.3V ceramic capacitors in parallel also provide sufficient phase margin. The low ESR and ESL associated with ceramic capacitors also reduces output ripple significantly over that seen with tantalum capacitors. Temperature rise due to ESR ripple current dissipation is also reduced.

Input Capacitor

The input capacitor ripple is:

\[
I_{\text{RMS}} = I_0 \cdot \frac{V_o}{\sqrt{2}} \cdot \left(1 - \frac{V_o}{V_{\text{IN}}}
ight) = 1.42\text{Arms}
\]

In the examples shown, C1 is a ceramic capacitor located as closely to the IC as possible. C1 provides the low impedance path for the sharp edges associated with the input current. C4 may or may not be required, depending upon the impedance characteristics looking back into the source. It serves to dampen out any input oscillations that may arise from a source that is highly inductive. For most applications, where the source has sufficient bulk capacitance and is fed directly to the AAT1154 through large PCB traces or planes, it is not required. When operating the AAT1154 evaluation board on the bench, C4 is required due to the inductance of the wires running from the laboratory power supply to the evaluation board.

Adjustable Output

For applications requiring an output other than the fixed outputs available, the 1V version can be externally programmed. Resistors R3 and R4 of Figure 5 force the output to regulate higher than 1V. For accurate results (less than 1% error for all outputs), select R4 to be 10kΩ. Once R4 has been selected, R3 can be calculated.

For a 1.25V output with R4 set to 10kΩ, R3 is 2.5kΩ.

\[
R_3 = (V_O - 1) \cdot R_4 = 0.25 \cdot 10k \Omega = 2.5k \Omega
\]

Figures 6 and 7 display the suggested PCB layout for the adjustable output AAT1154.
Capacitors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Capacitance (μF)</th>
<th>Voltage (V)</th>
<th>Temp Co.</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4532X5ROJ107M</td>
<td>TDK</td>
<td>100</td>
<td>6.3</td>
<td>X5R</td>
<td>1812</td>
</tr>
<tr>
<td>GRM43-2 X5R 107M 6.3</td>
<td>Murata</td>
<td>100</td>
<td>6.3</td>
<td>X5R</td>
<td>1812</td>
</tr>
<tr>
<td>GRM43-2 X5R 476K 6.3</td>
<td>Murata</td>
<td>47</td>
<td>6.3</td>
<td>X5R</td>
<td>1812</td>
</tr>
<tr>
<td>GRM42-6 X5R 106K 6.3</td>
<td>Murata</td>
<td>10</td>
<td>6.3</td>
<td>X5R</td>
<td>1206</td>
</tr>
<tr>
<td>594D127X_6R3C2T</td>
<td>Vishay</td>
<td>120</td>
<td>6.3</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>595D107X0016C</td>
<td>Vishay</td>
<td>100</td>
<td>16.0</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

Table 2: Capacitors.

Inductors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Inductance (μH)</th>
<th>I (Amps)</th>
<th>DCR (Ω)</th>
<th>Height (mm)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDRH6D38-4763-T055</td>
<td>Sumida</td>
<td>1.5</td>
<td>4.0</td>
<td>0.014</td>
<td>4.0</td>
<td>Shielded</td>
</tr>
<tr>
<td>N05D B1R5M</td>
<td>Taiyo Yuden</td>
<td>1.5</td>
<td>3.2</td>
<td>0.025</td>
<td>2.8</td>
<td>Non-Shielded</td>
</tr>
<tr>
<td>NP06DB B1R5M</td>
<td>Taiyo Yuden</td>
<td>1.5</td>
<td>3.0</td>
<td>0.022</td>
<td>3.2</td>
<td>Shielded</td>
</tr>
<tr>
<td>LQH55DN1R5M03</td>
<td>Murata</td>
<td>1.5</td>
<td>3.7</td>
<td>0.022</td>
<td>4.7</td>
<td>Non-Shielded</td>
</tr>
<tr>
<td>LQH66SN1R5M03</td>
<td>Murata</td>
<td>1.5</td>
<td>3.8</td>
<td>0.016</td>
<td>4.7</td>
<td>Shielded</td>
</tr>
</tbody>
</table>

Table 3: Inductors.

Diodes

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>V_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diodes Inc.</td>
<td>B340LA</td>
<td>0.45V @ 3A</td>
</tr>
<tr>
<td>ROHM</td>
<td>RB050L-40</td>
<td>0.45V @ 3A</td>
</tr>
<tr>
<td>Micro Semi</td>
<td>5820SM</td>
<td>0.46V @ 3A</td>
</tr>
</tbody>
</table>

Table 4: Diodes.
Ordering Information

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Package</th>
<th>Marking</th>
<th>Part Number (Tape and Reel)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0V (Adj. V_{OUT} ≥ 1.0V)</td>
<td>SOP-8</td>
<td>115410</td>
<td>AAT1154IAS-1.0-T1</td>
</tr>
<tr>
<td>1.8V</td>
<td>SOP-8</td>
<td>115418</td>
<td>AAT1154IAS-1.8-T1</td>
</tr>
<tr>
<td>2.5V</td>
<td>SOP-8</td>
<td>115425</td>
<td>AAT1154IAS-2.5-T1</td>
</tr>
<tr>
<td>3.3V</td>
<td>SOP-8</td>
<td>115433</td>
<td>AAT1154IAS-3.3-T1</td>
</tr>
</tbody>
</table>

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free.

For additional information, refer to Skyworks Definition of Green™, document number SQ04-0074.

Package Information

SOP-8

All dimensions in millimeters.

¹. Sample stock is generally held on part numbers listed in **BOLD**.

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.