General Description

The AAT2784 is a 3-channel 1.8MHz step-down converter for applications where power efficiency and solution size are critical. The input voltage range is 2.7V to 5.5V and the outputs are adjustable from 0.6V to \(V_{IN} \).

Channel 3 delivers up to 1.5A output current and channels 1 and 2 deliver up to 300mA each. The AAT2784 uses a high switching frequency to minimize the size of external components. The AAT2784 requires a minimum of external components to realize a high efficiency triple-output buck converter minimizing solution cost and PCB footprint.

Each of the 3 regulators has an independent enable pin, adjustable output voltage and operates with low no load quiescent current, providing high efficiency over the entire load range.

The AAT2784 is available in a Pb-free 16 pin TDFN34 package, and is rated over the -40°C to +85°C operating temperature range.

Features

- \(V_{IN} \) Range: 2.7 to 5.5V
- Output Voltage Range: 0.6V to \(V_{IN} \)
- Output Current:
 - Channel 3: 1.5A
 - Channel 1: 300mA
 - Channel 2: 300mA
- Highly Efficient Step-Down Converters
- Low \(R_{DS(ON)} \) Integrated Power Switches
- 100% Duty Cycle
- 1.8 MHz Switching Frequency
- Internal Soft Start
- Fast 150\(\mu \)s Turn-On Time
- Over-Temperature Protection
- Current Limit Protection
- TDFN34-16 Package
- -40°C to 85°C Temperature Range

Applications

- Cellular and Smart Phones
- Digital Cameras
- Handheld Instruments
- Mass Storage Systems
- Microprocessor / DSP Core / IO Power
- PDAs and Handheld Computers
- Portable Media Players
- USB Devices
- Wireless LAN

Typical Application
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PGND2</td>
<td>Power ground return pin 2. Connect to the output and input capacitor return.</td>
</tr>
<tr>
<td>2</td>
<td>FB2</td>
<td>Feedback input pin for channel 2. Connect an external resistor divider to this pin to program the output voltage to the desired value.</td>
</tr>
<tr>
<td>3</td>
<td>EN1</td>
<td>Enable pin for channel 1. Active high.</td>
</tr>
<tr>
<td>4</td>
<td>EN2</td>
<td>Enable pin for channel 2. Active high.</td>
</tr>
<tr>
<td>5</td>
<td>AGND</td>
<td>Signal Ground.</td>
</tr>
<tr>
<td>6</td>
<td>IN</td>
<td>Input supply pin for device. Supplies bias for the internal circuitry.</td>
</tr>
<tr>
<td>7</td>
<td>EN3</td>
<td>Enable pin for channel 3. Active high.</td>
</tr>
<tr>
<td>8</td>
<td>FB3</td>
<td>Feedback input pin for channel 3. Connect an external resistor divider to this pin to program the output voltage to the desired value.</td>
</tr>
<tr>
<td>9</td>
<td>PGND3</td>
<td>Power ground return for channel 3. Connect to the output and input capacitor return.</td>
</tr>
<tr>
<td>10</td>
<td>LX3</td>
<td>Power switching node for channel 3. Output switching node connects to the output inductor.</td>
</tr>
<tr>
<td>11</td>
<td>VP3</td>
<td>Input power supply pin for channel 3. Must be closely decoupled.</td>
</tr>
<tr>
<td>12</td>
<td>FB1</td>
<td>Feedback input pin for channel 1. Connect an external resistor divider to this pin to program the output voltage to the desired value.</td>
</tr>
<tr>
<td>13</td>
<td>PGND1</td>
<td>Power ground return for channel 1. Connect to the output and input capacitor return.</td>
</tr>
<tr>
<td>14</td>
<td>LX1</td>
<td>Power switching node for channel 1. Output switching node connects to the output inductor.</td>
</tr>
<tr>
<td>15</td>
<td>VP1_2</td>
<td>Input power supply pin for channels 1 and 2. Must be closely decoupled.</td>
</tr>
<tr>
<td>16</td>
<td>LX2</td>
<td>Power switching node for channel 2. Output switching node connects to the output inductor.</td>
</tr>
<tr>
<td>EP</td>
<td>EP</td>
<td>Exposed pad. Connect to ground directly under the device. Use properly sized vias for thermal coupling to the ground plane. See section on PCB layout guidelines.</td>
</tr>
</tbody>
</table>

Pin Configuration

![TDFN34-16 (Top View)](image-url)
Absolute Maximum Ratings\(^1\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN}, V_P)</td>
<td>Input Voltages to AGND/PGND</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{LX})</td>
<td>LX1, LX2, LX3 to AGND/PGND</td>
<td>(-0.3) to (V_{IN} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{FB})</td>
<td>FB1, FB2, FB3 to AGND/PGND</td>
<td>(-0.3) to (V_{IN} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EN})</td>
<td>EN1, EN2, EN3 to AGND/PGND</td>
<td>(-0.3) to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>(T_J)</td>
<td>Operating Junction Temperature Range</td>
<td>(-40) to 150</td>
<td>(^\circ)C</td>
</tr>
<tr>
<td>(T_{LEAD})</td>
<td>Maximum Soldering Temperature (at leads, 10 sec)</td>
<td>300</td>
<td>(^\circ)C</td>
</tr>
</tbody>
</table>

1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.

Thermal Information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_D)</td>
<td>Maximum Power Dissipation(^2)</td>
<td>2.0</td>
<td>W</td>
</tr>
<tr>
<td>(\theta_JA)</td>
<td>Thermal Resistance(^3)</td>
<td>50</td>
<td>(^\circ)C/W</td>
</tr>
</tbody>
</table>

2. Mounted on an FR4 board.
3. Derate 20mW/\(^\circ\)C above 25\(^\circ\)C ambient temperature.
Electrical Characteristics

\(V_{IN} = V_{P} = 3.6V; \ T_{A} = -40^\circ C \ to \ 85^\circ C, \) unless noted otherwise. Typical values are at \(T_{A} = 25^\circ C. \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>Input Voltage</td>
<td>(I_{OUT1} = 0) to (1.5A; \ I_{OUT2,3} = 0) to (300mA; \ V_{IN} = 2.7) to (5.5V)</td>
<td>2.7</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage Tolerance</td>
<td>(I_{OUT1} = 0) to (1.5A; \ I_{OUT2,3} = 0) to (300mA; \ V_{IN} = 2.7) to (5.5V)</td>
<td>-3.0</td>
<td>3.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage Range</td>
<td>(I_{OUT1} = 0) to (1.5A; \ I_{OUT2,3} = 0) to (300mA; \ V_{IN} = 2.7) to (5.5V)</td>
<td>0.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{Q1,2})</td>
<td>Quiescent Current Channels 1, 2</td>
<td>Per Channel, No Load</td>
<td>50</td>
<td>100</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(I_{Q3})</td>
<td>Quiescent Current Channel 3</td>
<td>No Load</td>
<td>45</td>
<td>90</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>(I_{SHDN})</td>
<td>Shutdown Current</td>
<td>(V_{EN1} = V_{EN2} = V_{EN3} = GND)</td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{LX,LEAK})</td>
<td>LX Reverse Leakage Current</td>
<td>(V_{IN}) Open, (V_{LX} = 5.5V; \ V_{EN} = 0V)</td>
<td></td>
<td></td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{LX,LEAK})</td>
<td>LX Leakage Current</td>
<td>(V_{IN} = 5.5V, \ V_{LX} = 0) to (V_{IN})</td>
<td></td>
<td></td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{R})</td>
<td>Feedback Leakage</td>
<td>(V_{FB} = 1.0V)</td>
<td></td>
<td></td>
<td>0.2</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{ILM1,2})</td>
<td>P-Channel Current Limit</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(I_{ILM3})</td>
<td>P-Channel Current Limit</td>
<td></td>
<td>3.81</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(R_{DS(OH)1,2})</td>
<td>High Side Switch On-Resistance</td>
<td></td>
<td>480</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(R_{DS(OL)1,2})</td>
<td>Low Side Switch On-Resistance</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(R_{DS(OH)3})</td>
<td>High Side Switch On-Resistance</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(R_{DS(OL)3})</td>
<td>Low Side Switch On-Resistance</td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(\Delta V_{LOADREG})</td>
<td>Load Regulation</td>
<td>(I_{LOAD1,2} = 0) to (300 mA; \ I_{LOAD3} = 0) to (1.5A)</td>
<td>0.8</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(\Delta V_{LINREG})</td>
<td>Line Regulation</td>
<td>(V_{IN} = 2.7) to (5.5V)</td>
<td>0.5</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(F_{OSC1,2})</td>
<td>Oscillator Frequency Channels 1, 2</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(F_{OSC3})</td>
<td>Oscillator Frequency Channel 3</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(T_{S})</td>
<td>Start-Up Time</td>
<td>From Enable to Output Regulation</td>
<td>150</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>(T_{SD})</td>
<td>Over-Temperature Shutdown Threshold</td>
<td></td>
<td>140</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{HYS})</td>
<td>Over-Temperature Shutdown Hysteresis</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Enable Threshold Low</td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Enable Threshold High</td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>(I_{EN})</td>
<td>Enable Input Current</td>
<td>(V_{IN} = V_{EN} = 5.5V)</td>
<td>-1.0</td>
<td>1.0</td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

1. The AAT2784 is guaranteed to meet performance specifications over the \(-40^\circ C \ to \ 85^\circ C\) operating temperature range, and is assured by design, characterization and correlation with statistical process controls.
Typical Characteristics

Efficiency vs. Output Current
(Channels 1 and 2; V_{OUT} = 3.3V)

Load Regulation
(Channels 1 and 2; V_{OUT} = 3.3V)

Efficiency vs. Output Current
(Channel 3; V_{OUT} = 1.2V)

Load Regulation
(Channel 3; V_{OUT} = 1.2V)

Switching Frequency vs. Input Voltage

Output Error vs. Temperature
Typical Characteristics

Quiescent Current vs. Input Voltage
(Channels 1 and 2; VOUT = 3.3V; No Load; Open Loop)

Input Voltage (V)

Supply Current (µA)

Quiescent Current vs. Input Voltage
(Channel 3; VOUT = 1.2V; No Load; Open Loop)

Input Voltage (V)

Supply Current (µA)

P-Channel On-Resistance vs. Input Voltage
(Channels 1 and 2; VOUT = 3.3V)

Input Voltage (V)

On-Resistance (mΩ)

P-Channel On-Resistance vs. Input Voltage
(Channel 3; VOUT = 1.2V)

Input Voltage (V)

Switch On-Resistance (mΩ)

VIH vs. Input Voltage

Input Voltage (V)

VIL vs. Input Voltage

Input Voltage (V)
Typical Characteristics

Load Transient
(Channels 1 and 2; $V_{IN} = 3.6V$; $I_{OUT} = 100$ to $300mA$; $V_{OUT} = 3.3V$)

Load Transient
(Channels 1 and 2; $V_{IN} = 5V$; $I_{OUT} = 1$ to $300mA$; $V_{OUT} = 3.3V$)

Load Transient
(Channel 3; $V_{IN} = 3.6V$; $I_{OUT} = 0.5$ to $1.5A$; $V_{OUT} = 1.2V$; No C_{FF})

Load Transient
(Channel 3; $V_{IN} = 5V$; $I_{OUT} = 0.5$ to $1.5A$; $V_{OUT} = 1.2V$; No C_{FF})

Soft Start
(Channels 1 and 2; $V_{IN} = 5V$; $V_{OUT} = 3.3V$; $I_{OUT} = 50mA$)

Soft Start
(Channel 3; $V_{IN} = 5V$; $V_{OUT} = 1.2V$; $I_{OUT} = 1mA$)
Typical Characteristics

Soft Start
(Channel 3; V\textsubscript{IN} = 5V;
V\textsubscript{OUT} = 1.2V; I\textsubscript{OUT} = 1.5A)

Enable Voltage (top) (V)
Output Voltage (middle) (V)
Inductor Current (bottom) (A)

Time (50\mu s/div)

Line Transient
(Channels 1 and 2; V\textsubscript{OUT} = 3.3V;
V\textsubscript{IN} = 3.6 to 4.2V; I\textsubscript{OUT} = 300mA)

Input Voltage (top) (V)
Output Voltage (bottom) (V)

Time (100ms/div)

Line Transient
(Channel 3; V\textsubscript{OUT} = 1.2V;
V\textsubscript{IN} = 3.6 to 4.2V; I\textsubscript{OUT} = 1.5A)

Input Voltage (top) (V)
Output Voltage (bottom) (V)

Time (50\mu s/div)

Line Regulation
(Channels 1 and 2; V\textsubscript{OUT} = 3.3V)

Input Voltage (V)
Accuracy (%)

I\textsubscript{OUT} = 10mA
I\textsubscript{OUT} = 100mA
I\textsubscript{OUT} = 300mA

2.6 3.1 3.6 4.1 4.6 5.1 5.6

Line Regulation
(Channel 3; V\textsubscript{OUT} = 1.2V)

Accuracy (%)

I\textsubscript{OUT} = 10mA
I\textsubscript{OUT} = 100mA
I\textsubscript{OUT} = 1500mA

2.6 3.1 3.6 4.1 4.6 5.1 5.6

Enable Voltage (top) (V)
Output Voltage (middle) (V)
Inductor Current (bottom) (A)
Typical Characteristics

Output Ripple
(Channels 1 and 2; V\text{OUT} = 3.3V; V\text{IN} = 4.6V; I\text{OUT} = 1mA)

Output Ripple
(Channels 1 and 2; V\text{OUT} = 3.3V; V\text{IN} = 3.6V; I\text{OUT} = 300mA)

Output Ripple
(Channel 3; V\text{OUT} = 1.2V; V\text{IN} = 4.6V; I\text{OUT} = 1.5A)

Output Ripple
(Channel 3; V\text{OUT} = 1.2V; V\text{IN} = 3.6V; I\text{OUT} = 1.5A)

Output Ripple
(Channels 1 and 2; V\text{OUT} = 3.3V; V\text{IN} = 5V; I\text{OUT} = 300mA)
Typical Characteristics

Output Ripple
(Channel 3; \(V_{OUT} = 1.2\)V; \(V_{IN} = 5\)V; \(I_{OUT} = 1.5\)A)

Output Voltage (top) (V) vs. Inductor Current (bottom) (A)

Time (400ns/div)

Output Ripple
(Channel 3; \(V_{OUT} = 1.2\)V; \(V_{IN} = 4.2\)V; \(I_{OUT} = 1\)mA)

Output Voltage (top) (V) vs. Inductor Current (bottom) (A)

Time (400ns/div)
Functional Description

The AAT2784 is a high performance power management IC comprised of 3 buck converters. Each channel has an independent enable pin. Operating at a switching frequency of 1.8MHz, the converter requires a minimum of small external components, reducing the solution cost and PCB footprint.

All converters operate with an input voltage range of 2.7V to 5.5V. The output voltage range is 0.6V to VIN and is adjustable with an external resistor divider. Channel 3 power devices are sized for 1.5A output current. Channels 1 and 2 power devices are sized for 300mA output current while maintaining over 85% efficiency at full load. Peak efficiency is above 95%. Light load efficiency is maintained at greater than 80% down to 85% of full load current. All channels have excellent transient response, load and line regulation. Transient response time is typically less than 20μs.

Soft start limits the current surge seen at the input and eliminates output voltage overshoot. The enable inputs, when pulled low, force the respective converter into a low power non-switching state consuming less than 1μA of current.

For overload conditions, the peak input current is limited. Also, thermal protection completely disables switching if internal dissipation becomes excessive, thus protecting the device from damage. The junction over-temperature threshold is 140°C with 15°C of hysteresis. Under-voltage lockout (UVLO) guarantees sufficient VIN bias and proper operation of all internal circuits prior to activation.

Control Loop

The AAT2784 is a peak current mode step-down converter. The current through the P-channel MOSFET (high side) is sensed for current loop control, as well as short-
circuit and overload protection. A fixed slope compensation signal is added to the sensed current to maintain stability for duty cycles greater than 50%. The peak current mode loop appears as a voltage-programmed current source in parallel with the output capacitor. The output of the voltage error amplifier programs the current mode loop for the necessary peak switch current to force a constant output voltage for all load and line conditions. Internal loop compensation terminates the transconductance voltage error amplifier output. The reference voltage is internally set to program the converter output voltage greater than or equal to 0.6V.

Soft Start/Enable

Soft start limits the current surge seen at the input and eliminates output voltage overshoot. When pulled low, the enable input forces the AAT2784 into a low-power, non-switching state. The total input current during shutdown is less than 1μA.

Low Dropout Operation

For conditions where the input voltage drops to the output voltage level, the converter duty cycle increases to 100%. As the converter approaches the 100% duty cycle, the minimum off time initially forces the high side in time to exceed the 1.8MHz clock cycle and reduce the effective switching frequency. Once the input drops below the level where the converter can regulate the output, the high side P-channel MOSFET is enabled continuously for 100% duty cycle. At 100% duty cycle the output voltage tracks the input voltage minus the I*R drop of the high side P-channel MOSFET.

Current Limit and Over-Temperature Protection

For overload conditions, the peak input current is limited. To minimize power dissipation and stresses under current limit and short-circuit conditions, switching is terminated after entering current limit for a series of pulses. Switching is terminated for seven consecutive clock cycles after a current limit has been sensed for a series of four consecutive clock cycles. Thermal protection completely disables switching when internal dissipation becomes excessive. The junction over-temperature threshold is 140°C with 15°C of hysteresis. Once an over-temperature or over-current fault condition is removed, the output voltage automatically recovers.

Under-Voltage Lockout

Internal bias of all circuits is controlled via the \(V_{IN} \) input. Under-voltage lockout (UVLO) guarantees sufficient \(V_{IN} \) bias and proper operation of all internal circuitry prior to activation.

Component Selection

Inductor Selection: Channels 1 and 2

The step-down converter uses peak current mode control with slope compensation to maintain stability for duty cycles greater than 50%. The output inductor value must be selected so the inductor current down slope meets the internal slope compensation requirements. The internal slope compensation for the adjustable and low voltage fixed versions of channels 1 and 2 is 0.6A/μs. This equates to a slope compensation that is 75% of the inductor current down slope for a 1.8V output and 2.2μH inductor.

\[
m = \frac{0.75 \cdot V_o}{L} = \frac{0.75 \cdot 1.8V}{2.2\mu H} = 0.6 \frac{A}{\mu s}
\]

\[
L = \frac{0.75 \cdot V_0}{m} = \frac{0.75 \cdot 3.3V}{0.6 \frac{A}{\mu s}} = 4.1\mu H
\]

In this case a standard 4.7μH value is selected. Table 1 displays the suggested inductor values for channels 1 and 2. The 4.7μH CDRH2D11 series inductor selected from Sumida has a 170mΩ DCR and a 0.88A DC current rating. At full load the inductor DC loss is 15mW which corresponds to a 1.5% loss in efficiency for a 300mA, 3.3V output. For 4.7μH GLF2518T4R7M series TDK inductor has a 260mΩ worst case DCR and a 475mA DC current rating. At full 300mA load, the inductor DC loss is 23mW which gives less than 7% loss in efficiency for a 300mA, 3.3V output.

Inductor Selection: Channel 3

The internal slope compensation for the adjustable and low voltage fixed versions of channel 3 is 0.75A/μs. This equates to a slope compensation that is 75% of the inductor current down slope for a 1.8V output and 1.8μH inductor.

\[
m = \frac{0.75 \cdot V_o}{L} = \frac{0.75 \cdot 1.8V}{1.8\mu H} = 0.75 \frac{A}{\mu s}
\]
The inductor should be set equal to the output voltage numeric value in micro henries (μH). This guarantees that there is sufficient internal slope compensation. Manufacturer’s specifications list both the inductor DC current rating, which is a thermal limitation, and the peak current rating, which is determined by the saturation characteristics. The inductor should not show any appreciable saturation under normal load conditions. Some inductors may meet the peak and average current ratings yet result in excessive losses due to a high DCR. Always consider the losses associated with the DCR and its effect on the total converter efficiency when selecting an inductor. For channel 3, the 1.5μH LQH32PN1R5NN0L series Murata inductor has a 68.4Ω worst case DCR and a 1.75A DC current rating. At full 1.5A load, the inductor DC loss is 154mW which gives less than 5% loss in efficiency for a 1.5A, 1.2V output.

Input Capacitor

Select a 10μF to 22μF X7R or X5R ceramic capacitor for the VP1_2 and VP3 inputs. To estimate the required input capacitor size, determine the acceptable input ripple level (V_{pp}) and solve for C_{IN}. The calculated value varies with input voltage and is a maximum when V_{IN} is double the output voltage.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Output Voltage</th>
<th>Inductor</th>
<th>Slope Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6V adjustable with external resistive divider</td>
<td>0.6V-2.0V</td>
<td>2.2μH</td>
<td>0.6A/\mu s</td>
</tr>
<tr>
<td></td>
<td>2.5V</td>
<td>3.3μH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3V</td>
<td>4.7μH</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: AAT2784 Inductor Values.

Always examine the ceramic capacitor DC voltage coefficient characteristics when selecting the proper value. For example, the capacitance of a 10μF, 6.3V, X5R ceramic capacitor with 5.0V DC applied is actually about 6μF. The maximum input capacitor RMS current is:

$$I_{RMS} = I_{O} \cdot \sqrt{\frac{V_{O}}{V_{IN}} \cdot \left(1 - \frac{V_{O}}{V_{IN}}\right)}$$

The input capacitor RMS ripple current varies with the input and output voltage and will always be less than or equal to half of the total DC load current.

$$\sqrt{\frac{V_{O}}{V_{IN}} \cdot \left(1 - \frac{V_{O}}{V_{IN}}\right)} = \sqrt{D \cdot (1 - D)} = \sqrt{0.5^2} = \frac{1}{2}$$

for $V_{IN} = 2 \cdot V_{O}$

The term appears in both the input voltage ripple and input capacitor RMS current equations and is a maximum when V_{O} is twice V_{IN}. This is why the input voltage ripple and the input capacitor RMS current ripple are a maximum at 50% duty cycle. The input capacitor provides a low impedance loop for the edges of pulsed current drawn by the AAT2784. Low ESR/ESL X7R and X5R ceramic capacitors are ideal for this function. To minimize stray inductance, the capacitor should be placed as closely as possible to the IC. This keeps the high frequency content of the input current localized, minimizing EMI and input voltage ripple. The proper placement of the input capacitor (C_{1}) can be seen in the evaluation board layout in the Layout section of this datasheet (see Figure 2). A laboratory test set-up typically consists of two long wires running from the bench power supply to the evaluation board input voltage pins. The inductance of these wires, along with the low-ESR ceramic input capacitor, can create a high Q network that may affect converter performance. This problem often becomes apparent in the form of excessive ringing in the output voltage during load transients. Errors in the loop phase and gain measurements can also result. Since the inductance of a short PCB trace feeding the input voltage is significantly lower than the power leads from the bench power supply, most applications do not exhibit this problem. In applications where the input power source lead inductance cannot be reduced to a level that does not
affect the converter performance, a high ESR tantalum or aluminum electrolytic should be placed in parallel with the low ESR/ESL bypass ceramic capacitor. This dampens the high Q network and stabilizes the system.

Output Capacitor: Channels 1 and 2

The output capacitor limits the output ripple and provides holdup during large load transitions. A 4.7μF to 10μF X5R or X7R ceramic capacitor typically provides sufficient bulk capacitance to stabilize the output during large load transitions and has the ESR and ESL characteristics necessary for low output ripple. The output voltage droop due to a load transient is dominated by the capacitance of the ceramic output capacitor. During a step increase in load current, the ceramic output capacitor alone supplies the load current until the loop responds. Within two or three switching cycles, the loop responds and the inductor current increases to match the load current demand. The relationship of the output voltage droop during the three switching cycles to the output capacitance can be estimated by:

$$C_{OUT} = \frac{3 \cdot \Delta I_{LOAD}}{V_{DROOP} \cdot F_S}$$

Once the average inductor current increases to the DC load level, the output voltage recovers. The above equation establishes a limit on the minimum value for the output capacitor with respect to load transients. The internal voltage loop compensation also limits the minimum output capacitor value to 4.7μF. This is due to its effect on the loop crossover frequency (bandwidth), phase margin, and gain margin. Increased output capacitance will reduce the crossover frequency with greater phase margin.

Output Capacitor: Channel 3

The output capacitor limits the output ripple and provides holdup during large load transitions. A 10μF to 22μF X5R or X7R ceramic capacitor typically provides sufficient bulk capacitance to stabilize the output during large load transitions and has the ESR and ESL characteristics necessary for low output ripple.

Adjustable Output Resistor Selection

The output voltage on the AAT2784 is programmed with external resistors R1 and R2. To limit the bias current required for the external feedback resistor string while maintaining good noise immunity, the minimum suggested value for R2 is 59kΩ. Although a larger value will further reduce quiescent current, it will also increase the impedance of the feedback node, making it more sensitive to external noise and interference. Table 2 summarizes the resistor values for various output voltages with R2 set to either 59kΩ for good noise immunity or 221kΩ for reduced no load input current.

$$R1 = \left(\frac{V_{OUT}}{V_{IN}} - 1\right) \cdot R2 = \left(\frac{3.3V}{0.6V} - 1\right) \cdot 59kΩ = 267kΩ$$

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R2 = 59kΩ \ R1 (kΩ)</th>
<th>R2 = 221kΩ \ R1 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>19.6</td>
<td>75</td>
</tr>
<tr>
<td>0.9</td>
<td>29.4</td>
<td>113</td>
</tr>
<tr>
<td>1.0</td>
<td>39.2</td>
<td>150</td>
</tr>
<tr>
<td>1.1</td>
<td>49.9</td>
<td>187</td>
</tr>
<tr>
<td>1.2</td>
<td>59.0</td>
<td>221</td>
</tr>
<tr>
<td>1.3</td>
<td>68.1</td>
<td>261</td>
</tr>
<tr>
<td>1.4</td>
<td>78.7</td>
<td>301</td>
</tr>
<tr>
<td>1.5</td>
<td>88.7</td>
<td>332</td>
</tr>
<tr>
<td>1.8</td>
<td>118</td>
<td>442</td>
</tr>
<tr>
<td>1.85</td>
<td>124</td>
<td>464</td>
</tr>
<tr>
<td>2.0</td>
<td>137</td>
<td>523</td>
</tr>
<tr>
<td>2.5</td>
<td>187</td>
<td>715</td>
</tr>
<tr>
<td>3.0</td>
<td>237</td>
<td>887</td>
</tr>
<tr>
<td>3.3</td>
<td>267</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 2: AAT2784 Resistor Values for Various Output Voltages.

Thermal Calculations

There are three types of losses associated with the AAT2784 step-down converter: switching losses, conduction losses, and quiescent current losses. Conduction losses are associated with the R_{DS(ON)} characteristics of the power output switching devices. Switching losses are dominated by the gate charge of the power output switching devices. At full load, assuming continuous conduction mode (CCM), a simplified form of the losses is given by:

$$P_{TOTAL} = \frac{I_O^2 \cdot (R_{DS(ON)H} \cdot V_O + R_{DS(ON)L} \cdot [V_{IN} - V_O])}{V_{IN}} + (t_{sw} \cdot F_S \cdot I_O + I_Q) \cdot V_{IN}$$
I_Q is the step-down converter quiescent current. The term t_{SW} is used to estimate the full load step-down converter switching losses. For the condition where the step-down converter is in dropout at 100% duty cycle, the total device dissipation reduces to:

$$P_{TOTAL} = I_Q^2 \cdot R_{DS(ON)H} + I_Q \cdot V_{IN}$$

Since $R_{DS(ON)H}$ quiescent current, and switching losses all vary with input voltage, the total losses should be investigated over the complete input voltage range. Given the total losses, the maximum junction temperature can be derived from the θ_{JA} for the TDFN34-16 package, which is 50°C/W.

$$T_{J(MAX)} = P_{TOTAL} \cdot \theta_{JA} + T_{AMB}$$

Layout

The suggested PCB layout for the AAT2784 is shown in Figures 2 and 3. The following guidelines should be used to help ensure a proper layout.

1. The power input capacitors (C5 and C8) should be connected as closely as possible to VP1_2, VP3 and PGND1,2,3 as shown in Figure 2. Due to the pin placement of VP1_2 and VP3 for all converters, proper decoupling is not possible with just one input capacitor.
2. C1 and R7 are optional low pass filter components for the IN supply pin for the device if additional noise decoupling is required in a noisy system.
3. C2 and L1, C6 and L2, C10 and L3 should be connected as closely as possible. The connection of L1, 2, 3 to the LX1, 2, 3 pin should be as short as possible.
4. The feedback trace or FB pin should be separate from any power trace and connect as closely as possible to the load point. Sensing along a high-current load trace will degrade DC load regulation.
5. The resistance of the trace from the load returns to PGND1, 2 and 3 should be kept to a minimum. This will help to minimize any error in DC regulation due to differences in the potential of the internal signal ground and the power ground.
6. Connect unused signal pins to ground to avoid unwanted noise coupling.
7. For good thermal coupling, PCB vias are required from the pad for the TDFN paddle to the bottom ground plane. The via diameter should be 0.3mm to 0.33mm and positioned on a 1.2mm grid.

Evaluation Board Schematic

![Figure 1: AAT2784 Evaluation Board Schematic.](image-url)
Evaluation Board Layout

![AAT2784 Evaluation Board Component Side Layout](image1)

![AAT2784 Evaluation Board Solder Side Layout](image2)

Table 3: AAT2784 Evaluation Board Bill of Materials.

<table>
<thead>
<tr>
<th>Component</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>AAT2784</td>
<td>AATI</td>
<td>3-Channel Step-Down DC/DC Converter</td>
</tr>
<tr>
<td>L1, L2</td>
<td>CDRX2D11</td>
<td>Sumida</td>
<td>4.7μH 0.88A 170mΩ (3.2x3.2x1.2)mm Shielded</td>
</tr>
<tr>
<td>L3</td>
<td>LQH32PN1R5NN0L</td>
<td>Murata</td>
<td>1.5μH series Murata inductor has a 68.4mΩ worst case DCR and a 1.75A DC</td>
</tr>
<tr>
<td>C1, C4</td>
<td>Generic</td>
<td></td>
<td>10μF (Optional)</td>
</tr>
<tr>
<td>C2, C6</td>
<td>GMR219R61A475KE19</td>
<td>Murata</td>
<td>4.7μF 10V 0805</td>
</tr>
<tr>
<td>C5, C8, C10</td>
<td>GMR21BR60306KE19</td>
<td>Murata</td>
<td>10μF 6.3V 0805</td>
</tr>
<tr>
<td>C9</td>
<td>Generic</td>
<td></td>
<td>56pF 6.3V 0402</td>
</tr>
<tr>
<td>R1, R3</td>
<td>Generic</td>
<td></td>
<td>133kΩ 0402</td>
</tr>
<tr>
<td>R2, R4</td>
<td>Generic</td>
<td></td>
<td>29.4kΩ 0402</td>
</tr>
<tr>
<td>R5, R6</td>
<td>Generic</td>
<td></td>
<td>59kΩ 0402</td>
</tr>
<tr>
<td>R7</td>
<td>Generic</td>
<td></td>
<td>0Ω</td>
</tr>
</tbody>
</table>
Design Example

Specifications

\(V_{O3} \) 1.2V @ 1.5A (adjustable using 0.6V version), pulsed load \(\Delta I_{LOAD} = 1.5A \)
\(V_{O1} \) 3.3V @ 300mA (adjustable using 0.6V version), pulsed load \(\Delta I_{LOAD} = 300mA \)
\(V_{O2} \) 3.3V @ 300mA (adjustable using 0.6V version), pulsed load \(\Delta I_{LOAD} = 300mA \)
\(V_{IN} \) 2.7V to 4.2V (3.6V nominal)
\(F_s \) 1.8 MHz
\(T_{AMB} \) 85°C

Channel 3 Output Inductor

\[
L = \frac{0.75 \cdot V_o}{m} = \frac{0.75 \cdot 1.2V}{0.75 \frac{A}{\mu s}} = 1.2\mu H \text{; use } 1.5\mu H. \text{ (see Table 4)}.
\]

Select Murata LQH32PN1R5NN0L 1.5\mu H 1.75A DC current rating DCR = 68mΩ.

\[
\Delta I_3 = \frac{V_{O3}}{L \cdot F} \left(1 - \frac{V_{O3}}{V_{IN}} \right) = \frac{1.5V}{1.5\mu H \cdot 1.8MHz} \cdot \left(1 - \frac{1.5V}{4.2V} \right) = 357mA
\]

\(I_{PK3} = 1.5A + 0.36A = 1.86A \)

\(P_{L3} = I_{O3}^2 \cdot DCR = 1.5A^2 \cdot 68mΩ = 153mW \)

Channels 1 and 2 Output Inductors

\[
L_1 = L_2 = \frac{0.75 \cdot V_o}{m} = \frac{0.75 \cdot 3.3V}{0.6 \frac{A}{\mu s}} = 4.1\mu H \text{; use } 4.7\mu H. \text{ (see Table 4)}
\]

Select Sumida CDRH2D11 4.7\mu H 0.88A DC current rating DCR = 170mΩ.

\[
\Delta I_1 = \Delta I_2 = \frac{V_{O1}}{L \cdot F} \left(1 - \frac{V_{O1}}{V_{IN}} \right) = \frac{3.3V}{4.7\mu H \cdot 1.8MHz} \cdot \left(1 - \frac{3.3V}{4.2V} \right) = 84mA
\]

\(I_{PK1} = I_{PK2} = 0.3A + 0.084A = 0.384A \)

\(P_{L1} = P_{L2} = I_{O1}^2 \cdot DCR = 0.3^2 \cdot 170mΩ = 15.3mW \)
Channel 3 Output Capacitor

\[C_{OUT3} = \frac{3 \cdot \Delta I_{LOAD1}}{V_{DROOP} \cdot F_S} = \frac{3 \cdot 1.5A}{0.2V \cdot 1.8MHz} = 12.5\mu F; \text{ use } 22\mu F \]

\[I_{RMS(MAX)} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{V_{OUT1} \cdot (V_{IN(MAX)} - V_{OUT1})}{L \cdot F_S \cdot V_{IN(MAX)}} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{1.2V \cdot (4.2V - 1.2V)}{1.5\mu H \cdot 1.8MHz \cdot 4.2V} = 92mA \]

\[P_{ESR} = \text{ESR} \cdot I_{RMS}^2 = 5m\Omega \cdot 92mA^2 = 0.042mW \]

Channels 1 and 2 Output Capacitors

\[C_{OUT1} = C_{OUT2} = \frac{3 \cdot \Delta I_{LOAD1}}{V_{DROOP} \cdot F_S} = \frac{3 \cdot 0.3A}{0.2V \cdot 1.8MHz} = 2.5\mu F; \text{ use } 4.7\mu F \]

\[I_{RMS(MAX)} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{V_{OUT1} \cdot (V_{IN(MAX)} - V_{OUT1})}{L \cdot F_S \cdot V_{IN(MAX)}} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{3.3V \cdot (4.2V - 3.3V)}{4.7\mu H \cdot 1.8MHz \cdot 4.2V} = 24mA \]

\[P_{ESR} = \text{ESR} \cdot I_{RMS}^2 = 5m\Omega \cdot 24mA^2 = 3\mu W \]

Channel 3 Input Capacitor

Input Ripple \(V_{PP} \) = 33mV

\[C_{IN3} = \frac{1}{\left(V_{PP} \cdot \frac{1}{I_{O3}} - \text{ESR} \right) \cdot 4 \cdot F_S} = \frac{1}{\left(33mV \cdot \frac{1}{1.5A} - 5m\Omega \right) \cdot 4 \cdot 1.8MHz} = 9.3\mu F; \text{ use } 10\mu F \]

\[I_{RMS(MAX)} = \frac{I_O}{2} = 0.75A \]

\[P_{ESR} = \text{ESR} \cdot I_{RMS}^2 = 5m\Omega \cdot (0.75A)^2 = 3mW \]

Channels 1 and 2 Input Capacitors

Input Ripple \(V_{PP} \) = 15mV

\[C_{IN1} = C_{IN2} = \frac{1}{\left(V_{PP} \cdot \frac{1}{I_{O1} + I_{O2}} - \text{ESR} \right) \cdot 4 \cdot F_S} = \frac{1}{\left(15mV \cdot \frac{1}{0.6A} - 5m\Omega \right) \cdot 4 \cdot 1.8MHz} = 6.9\mu F; \text{ use } 10\mu F \]

\[I_{RMS(MAX)} = \frac{I_O}{2} = 0.3A \]

\[P_{ESR} = \text{ESR} \cdot I_{RMS}^2 = 5m\Omega \cdot (0.3A)^2 = 0.45mW \]
AAT2784 Losses

Total loss can be estimated by calculating the dropout ($V_{IN} = V_O$) losses where the power MOSFETs $R_{DS\,(ON)}$ will be at the maximum value. All values assume an 85°C ambient temperature and a 120°C junction temperature with the TDFN 50°C/W package.

$$P_{LOSS} = I_{O3} \cdot R_{DS\,(ON)H1} + 2 \cdot (I_{O1} \cdot R_{DS\,(ON)H2,3}) = 1.5A \cdot 120m\Omega + 2 \cdot (0.3A \cdot 400m\Omega) = 0.342W$$

$$T_{J(MAX)} = T_{AMB} + \theta_{JA} \cdot P_{LOSS} = 85°C + 50°C \cdot 0.324W = 101°C.$$
Ordering Information

<table>
<thead>
<tr>
<th>Package</th>
<th>Voltage</th>
<th>Marking</th>
<th>Part Number (Tape and Reel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDFN34-16</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green™, document number SQ04-0074.

Legend

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustable (0.6V)</td>
<td>A</td>
</tr>
</tbody>
</table>

1. XYY = assembly and date code.
2. Sample stock is generally held on all part numbers listed in BOLD.
package Information

TDFN34-16

Index Area

Top View

Bottom View

Side View

All dimensions in millimeters.

1. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.