General Description

The AAT4280 SmartSwitch is a P-channel MOSFET power switch designed for high-side load switching applications. The P-channel MOSFET device has a typical $R_{DS(ON)}$ of 80mΩ, allowing increased load switch power handling capacity. This device is available in three different versions with flexible turn on and off characteristics from very fast to slew rate limited. The standard AAT4280 (-1) version has a slew rate limited turn on load switch and is functionally compatible with the AAT4250 device while offering superior $R_{DS(ON)}$ characteristics. The AAT4280 (-2) version features fast load switch turn on capabilities, typically less than 500ns turn on and 3µs turn off times. The AAT4280 (-3) variation offers a shutdown load discharge circuit to rapidly turn off a load circuit when the switch is disabled. All AAT4280 load switch versions operate with an input voltage ranging from 1.8V to 5.5V, making them ideal for both 3V and 5V systems. The AAT4280 also features an under-voltage lockout which turns the switch off when an input under-voltage condition exists. Input logic levels are TTL and 2.5V to 5V CMOS compatible. The quiescent supply current is very low, typically 2.5µA. In shutdown mode, the supply current decreases to less than 1µA.

The AAT4280 is available in a Pb-free, 6-pin SOT23 or 8-pin SC70JW package and is specified over the -40°C to +85°C temperature range.

Features

- 1.8V to 5.5V Input Voltage Range
- Very Low $R_{DS(ON)}$, Typically 80mΩ (5V)
- Slew Rate Limited Turn-On Time Options
 - 1ms
 - 0.5µs
 - 100µs
- Fast Shutdown Load Discharge Option
- Low Quiescent Current
 - 2.5µA Typical
 - 1µA Max in Shutdown
- TTL/CMOS Input Logic Level
- Temperature Range: -40°C to +85°C
- 4kV ESD Rating
- 6-Pin SOT23 or 8-Pin SC70JW Package

Applications

- Cellular Telephones
- Digital Still Cameras
- Hot Swap Supplies
- Notebook Computers
- Personal Communication Devices
- Personal Digital Assistants (PDA)

Typical Application

![Typical Application Diagram](image-url)
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Symbol</th>
<th>Function</th>
<th>SOT23-6</th>
<th>SC70JW-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT</td>
<td>This pin is the P-channel MOSFET drain connection. Bypass to ground through a 0.1µF capacitor.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2, 5</td>
<td>GND</td>
<td>Ground connection.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ON/OFF</td>
<td>Enable input.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4, 6</td>
<td>IN</td>
<td>This pin is the input to the P-channel MOSFET source. Bypass to ground through a 1.0µF capacitor.</td>
<td>1, 5, 6, 7, 8</td>
<td></td>
</tr>
</tbody>
</table>

Pin Configuration

SOT23-6 (Top View)

OUT
GND
ON/OFF

SC70JW-8 (Top View)

IN
OUT
ON/OFF
GND
Selector Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Slew Rate (typ)</th>
<th>Active Pull Down</th>
<th>Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT4280-1</td>
<td>1ms</td>
<td></td>
<td>Active High</td>
</tr>
<tr>
<td>AAT4280-2</td>
<td>0.5µs</td>
<td></td>
<td>Active High</td>
</tr>
<tr>
<td>AAT4280-3</td>
<td>100µs</td>
<td>✓</td>
<td>Active High</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings

$T_A = 25^\circ\text{C}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>IN to GND</td>
<td>-0.3 to 6</td>
<td>V</td>
</tr>
<tr>
<td>V_{ON}</td>
<td>ON/OFF to GND</td>
<td>-0.3 to 6</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>OUT to GND</td>
<td>-0.3 to $V_{IN} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>I_{MAX}</td>
<td>Maximum Continuous Switch Current</td>
<td>2.3</td>
<td>A</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Maximum Pulsed Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$IN \geq 2.5V$</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>$IN < 2.5V$</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature Range</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_S</td>
<td>Storage Temperature Range</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{LEAD}</td>
<td>Maximum Soldering Temperature (at leads)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>V_{ESD}</td>
<td>ESD Rating¹ - HBM</td>
<td>4000</td>
<td>V</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value (SOT23-6)</th>
<th>Value (SC70JW-8)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_JA</td>
<td>Thermal Resistance</td>
<td>120</td>
<td>140</td>
<td>°C/W</td>
</tr>
<tr>
<td>P_o</td>
<td>Power Dissipation</td>
<td>833</td>
<td>714</td>
<td>mW</td>
</tr>
</tbody>
</table>

1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
2. Human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin.
Electrical Characteristics

\(V_{IN} = 5V, T_A = -40^\circ C \) to +85°C, unless otherwise noted. Typical values are \(T_A = 25^\circ C \).

AAT4280 All Versions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_IN)</td>
<td>Operation Voltage</td>
<td></td>
<td>1.81</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{UVLO})</td>
<td>Under-Voltage Lockout</td>
<td>(V_{IN}) Falling</td>
<td>1.0</td>
<td>1.4</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>(V_{UVLO(hys)})</td>
<td>Under-Voltage Lockout Hysteresis</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(I_{Q})</td>
<td>Quiescent Current</td>
<td>(ON/OFF =) Active</td>
<td>2.5</td>
<td>4</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{Q(OFF)})</td>
<td>Off Supply Current</td>
<td>(ON/OFF =) Inactive, (OUT =) Open</td>
<td>1</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{SD(OFF)})</td>
<td>Off Switch Current</td>
<td>(ON/OFF =) Inactive, (V_{OUT} = 0)</td>
<td>1</td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(R_{DS(ON)})</td>
<td>On Resistance</td>
<td>(V_{IN} = 5V, T_A = 25^\circ C)</td>
<td>80</td>
<td>120</td>
<td></td>
<td>m(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = 4.2V, T_A = 25^\circ C)</td>
<td>85</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = 3V, T_A = 25^\circ C)</td>
<td>100</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = 1.8V, T_A = 25^\circ C)</td>
<td>160</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{C(ON)})</td>
<td>On Resistance Temperature Coefficient</td>
<td></td>
<td>2800</td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>ON/OFF Input Logic Low Voltage</td>
<td>(V_{IN} = 2.7V) to 5.5V²</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = 2.7V) to (\leq 4.2V)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>ON/OFF Input Logic High Voltage</td>
<td>(V_{IN} = 3.3V)</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{IN} = >4.2V) to 5.5V</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{SLNK})</td>
<td>ON/OFF Input Leakage</td>
<td>(V_{ON/OFF} = 5.5V)</td>
<td></td>
<td>1</td>
<td></td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

AAT4280-1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ON})</td>
<td>Output Turn-On Delay</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>20</td>
<td>40</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(T_{ON})</td>
<td>Output Turn-On Rise Time</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>1000</td>
<td>1500</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(T_{OFF})</td>
<td>Output Turn-Off Delay Time</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>4</td>
<td>10</td>
<td></td>
<td>(\mu s)</td>
</tr>
</tbody>
</table>

AAT4280-2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ON})</td>
<td>Output Turn-On Delay</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>0.5</td>
<td>2</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(T_{ON})</td>
<td>Output Turn-On Rise Time</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(T_{OFF})</td>
<td>Output Turn-Off Delay Time</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>4</td>
<td>10</td>
<td></td>
<td>(\mu s)</td>
</tr>
</tbody>
</table>

AAT4280-3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ON})</td>
<td>Output Turn-On Delay</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>20</td>
<td>40</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(T_{ON})</td>
<td>Output Turn-On Rise Time</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>100</td>
<td>150</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(T_{OFF})</td>
<td>Output Turn-Off Delay Time</td>
<td>(V_{IN} = 5V, R_{LOAD} = 10\Omega, T_A = 25^\circ C)</td>
<td>4</td>
<td>10</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(R_{PD})</td>
<td>Output Pull-Down Resistance During OFF</td>
<td>(ON/OFF =) Inactive, (T_A = 25^\circ C)</td>
<td>150</td>
<td>250</td>
<td></td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

1. Part requires minimum start-up of \(V_{IN} \) \(\geq 2.0V \) to ensure operation down to 1.8V.
2. For \(V_{IN} \) outside this range, consult typical ON/OFF threshold curve.
Typical Characteristics

Unless otherwise noted, $V_{IN} = 5V$, $T_A = 25^\circ C$.

Quiescent Current vs. Temperature

- $V_{IN} = 5V$
- $V_{IN} = 3V$

Quiescent Current vs. Input Voltage

$R_{DS(ON)}$ vs. Input Voltage

- 2A
- 1A
- 500mA
- 100mA

$R_{DS(ON)}$ vs. Temperature

- $V_{IN} = 5V$
- $V_{IN} = 3V$

ON/OFF Threshold vs. Input Voltage

- V_{IH}
- V_{IL}

Off-Switch Current vs. Temperature
Typical Characteristics—AAT4280-1

Unless otherwise noted, $V_{IN} = 5V$, $T_a = 25^\circ C$.

AAT4280-1 Turn-On

$(V_{IN} = 3V; R_L = 6\Omega)$

AAT4280-1 Turn-On

$(V_{IN} = 5V; R_L = 10\Omega)$

AAT4280-1 Turn-Off

$(V_{IN} = 3V; R_L = 6\Omega)$

AAT4280-1 Turn-Off

$(V_{IN} = 5V; R_L = 10\Omega)$
Typical Characteristics—AAT4280-2

Unless otherwise noted, $V_{IN} = 5V$, $T_A = 25^\circ C$.

AAT4280-2 Turn-On

$V_{IN} = 3V$, $R_L = 6\Omega$

![AAT4280-2 Turn-On Diagram](image)

$V_{IN} = 5V$, $R_L = 10\Omega$

![AAT4280-2 Turn-On Diagram](image)

AAT4280-2 Turn-Off

$V_{IN} = 3V$, $R_L = 6\Omega$

![AAT4280-2 Turn-Off Diagram](image)

$V_{IN} = 5V$, $R_L = 10\Omega$

![AAT4280-2 Turn-Off Diagram](image)
Typical Characteristics—AAT4280-3

Unless otherwise noted, $V_{IN} = 5V$, $T_a = 25^\circ C$.

AAT4280-3 Turn-On

- **(V$_{IN}$ = 3V; R$_L$ = 6Ω)**
- **(V$_{IN}$ = 5V; R$_L$ = 10Ω)**

AAT4280-3 Turn-Off

- **(V$_{IN}$ = 3V; R$_L$ = 6Ω)**
- **(V$_{IN}$ = 5V; R$_L$ = 10Ω)**
Functional Description

The AAT4280 is a family of flexible P-channel MOSFET power switches designed for high-side load switching applications. There are three versions of the AAT4280 with different turn-on and turn-off characteristics to choose from, depending upon the specific requirements of an application. The first version, the AAT4280-1, has a moderate turn-on slew rate feature, which reduces inrush current when the MOSFET is turned on. This function allows the load switch to be implemented with either a small input capacitor or no input capacitor at all. During turn-on slewing, the current ramps linearly until it reaches the level required for the output load condition. The proprietary turn-on current control method works by careful control and monitoring of the MOSFET gate voltage. When the device is switched ON, the gate voltage is quickly increased to the threshold level of the MOSFET. Once at this level, the current begins to slew as the gate voltage is slowly increased until the MOSFET becomes fully enhanced. Once it has reached this point, the gate is quickly increased to the full input voltage and $R_{DS(ON)}$ is minimized.

The second version, the AAT4280-2, is a very fast switch intended for high-speed switching applications. This version has no turn-on slew rate control and no special output discharge features.

The final version, the AAT4280-3, has the addition of a minimized slew rate limited turn-on function and a shut-down output discharge circuit to rapidly turn off a load when the load switch is disabled through the ON/OFF pin.

All versions of the AAT4280 operate with input voltages ranging from 1.8V to 5.5V. All versions of this device have extremely low operating current, making them ideal for battery-powered applications. In cases where the input voltage drops below 1.8V, the AAT4280 MOSFET device is protected from entering into the saturation region of operation by automatically shutting down through an under-voltage lockout control circuit. The ON/OFF control pin is TTL compatible and will also function with 2.5V to 5V logic systems, making the AAT4280 an ideal level-shifting load switch.
Applications Information

Input Capacitor

A 1µF or larger capacitor is typically recommended for C\textsubscript{IN} in most applications. A C\textsubscript{IN} capacitor is not required for basic operation. However, C\textsubscript{IN} is useful in preventing load transients from affecting upstream circuits. C\textsubscript{IN} should be located as close to the device V\textsubscript{IN} pin as practically possible. Ceramic, tantalum, or aluminum electrolytic capacitors may be selected for C\textsubscript{IN}. There is no specific capacitor ESR requirement for C\textsubscript{IN}. However, for higher current operation, ceramic capacitors are recommended for C\textsubscript{IN} due to their inherent capability over tantalum capacitors to withstand input current surges from low impedance sources, such as batteries in portable devices.

Output Capacitor

For proper slew rate, a 0.1µF capacitor or greater between V\textsubscript{OUT} and GND is recommended. The output capacitor has no specific capacitor type or ESR requirement. If desired, C\textsubscript{OUT} may be increased without limit to accommodate any load transient condition without adversely affecting the device turn-on slew rate time.

Enable Function

The AAT4280 features an enable / disable function. This pin (ON/OFF) is compatible with both TTL or CMOS logic.

Reverse Output-to-Input Voltage Conditions and Protection

Under normal operating conditions, a parasitic diode exists between the output and input of the load switch. The input voltage should always remain greater than the output load voltage, maintaining a reverse bias on the internal parasitic diode. Conditions where V\textsubscript{OUT} might exceed V\textsubscript{IN} should be avoided since this would forward bias the internal parasitic diode and allow excessive current flow into the V\textsubscript{OUT} pin and possibly damage the load switch.

In applications where there is a possibility of V\textsubscript{OUT} exceeding V\textsubscript{IN} for extended periods of time, it is recommended to place a Schottky diode from V\textsubscript{IN} to V\textsubscript{OUT} (connecting the cathode to V\textsubscript{IN} and anode to V\textsubscript{OUT}). The Schottky diode forward voltage should be less than 0.45V.

Thermal Considerations and High Output Current Applications

The AAT4280 is designed to deliver a continuous output load current. The limiting characteristic for maximum safe operating output load current is package power dissipation. In order to obtain high operating currents, careful device layout and circuit operating conditions need to be taken into account.

The following discussions will assume the load switch is mounted on a printed circuit board utilizing the minimum recommended footprint, as stated in the Layout Considerations section of this datasheet.

At any given ambient temperature (T\textsubscript{a}), the maximum package power dissipation can be determined by the following equation:

\[
P_{D(MAX)} = \frac{[T_{J(MAX)} - T_A]}{\theta_JA}
\]

Constants for the AAT4280 are maximum junction temperature, T\textsubscript{J(MAX)} = 125°C, and package thermal resistance, \theta_JA = 120°C/W. Worst case conditions are calculated at the maximum operating temperature where T\textsubscript{a} = 85°C. Typical conditions are calculated under normal ambient conditions where T\textsubscript{a} = 25°C. At T\textsubscript{a} = 85°C, P\textsubscript{D(MAX)} = 333mW. At T\textsubscript{a} = 25°C, P\textsubscript{D(MAX)} = 833mW.

The maximum continuous output current for the AAT4280 is a function of the package power dissipation and the R\textsubscript{DS} of the MOSFET at T\textsubscript{J(MAX)}. The maximum R\textsubscript{DS} of the MOSFET at T\textsubscript{J(MAX)} is calculated by increasing the maximum room temperature R\textsubscript{DS} by the R\textsubscript{DS} temperature coefficient. The temperature coefficient (T\textsubscript{c}) is 2800ppm/°C. Therefore,

\[
MAX \ R_{DS125°C} = R_{DS25°C} \cdot (1 + T_C \cdot \Delta T)
\]

\[
MAX \ R_{DS125°C} = 120mΩ \cdot (1 + 0.0028 \cdot (125°C - 25°C)) = 154mΩ
\]

For maximum current, refer to the following equation:

\[
I_{OUT(MAX)} < \frac{P_{D(MAX)}}{R_{DS}}
\]
For example, if $V_{\text{IN}} = 5V$, $R_{\text{DS(MAX)}} = 154m\Omega$ and $T_A = 25^\circ\text{C}$, $I_{\text{OUT(MAX)}} = 2.3A$. If the output load current were to exceed 2.3A or if the ambient temperature were to increase, the internal die temperature would increase, and the device would be damaged.

Higher peak currents can be obtained with the AAT4280. To accomplish this, the device thermal resistance must be reduced by increasing the heat sink area or by operating the load switch in a duty-cycle manner.

High Peak Output Current Applications

Some applications require the load switch to operate at a continuous nominal current level with short duration, high-current peaks. The duty cycle for both output current levels must be taken into account. To do so, first calculate the power dissipation at the nominal continuous current level, and then add in the additional power dissipation due to the short duration, high-current peak scaled by the duty factor.

For example, a 4V system using an AAT4280 operates at a continuous 100mA load current level and has short 2A current peaks, as in a GSM application. The current peak occurs for 576µs out of a 4.61ms period.

First, the current duty cycle is calculated:

% Peak Duty Cycle: \(X/100 = 576\mu\text{s}/4.61\text{ms} \)

% Peak Duty Cycle = 12.5%

The load current is 100mA for 87.5% of the 4.61ms period and 2A for 12.5% of the period. Since the Electrical Characteristics do not report $R_{\text{DS(MAX)}}$ for 4V operation, it must be calculated approximately by consulting the chart of $R_{\text{DS(ON)}}$ vs. V_{IN}. The R_{DS} reported for 5V can be scaled by the ratio seen in the chart to derive R_{DS} for a 4V V_{IN}: 120mΩ · 87mΩ/80mΩ = 130mΩ.

De-rated for temperature: 130mΩ x (1 + 0.0028 · (125°C - 25°C)) = 166mΩ. The power dissipation for a 100mA load is calculated as follows:

\[
P_{\text{D(MAX)}} = I_{\text{OUT}}^2 \cdot R_{\text{DS}}
\]

\[
P_{\text{D(100mA)}} = (100\text{mA})^2 \cdot 166\text{m} \Omega
\]

\[
P_{\text{D(100mA)}} = 1.66\text{mW}
\]

\[
P_{\text{D(87.5%DC)}} = %\text{DC} \cdot P_{\text{D(100mA)}}
\]

\[
P_{\text{D(87.5%DC)}} = 0.875 \cdot 1.66\text{mW}
\]

\[
P_{\text{D(87.5%DC)}} = 1.45\text{mW}
\]

The power dissipation for 2A load at 12.5% duty cycle is 83mW. Finally, the two power figures are summed to determine the total true power dissipation under the varied load.

\[
P_{\text{D(total)}} = P_{\text{D(100mA)}} + P_{\text{D(2A)}}
\]

\[
P_{\text{D(total)}} = 1.45\text{mW} + 83\text{mW}
\]

\[
P_{\text{D(total)}} = 84.5\text{mW}
\]

The maximum power dissipation for the AAT4280 operating at an ambient temperature of 85°C is 333mW. The device in this example will handle a 2A pulse for up to 50% duty cycle. At lower ambient temperatures, the duty cycle can be further increased.

Printed Circuit Board Layout Recommendations

For proper thermal management and to take advantage of the low $R_{\text{DS(ON)}}$ of the AAT4280, a few circuit board layout rules should be followed: V_{IN} and V_{OUT} should be routed using wider than normal traces, and GND should be connected to a ground plane. To maximize package thermal dissipation and power handling capacity of the AAT4280 SOT23-6/ SC70JW-8 package, the ground plane area connected to the ground pins should be made as large as possible. For best performance, C_{IN} and C_{OUT} should be placed close to the package pins.

Evaluation Board Layout

The AAT4280 evaluation layout follows the printed circuit board layout recommendations, and can be used for good applications layout. Refer to Figures 1 through 3.

Note: Board layout shown is not to scale.
Figure 1: AAT4280 Evaluation Board Top Side
Silk Screen Layout / Assembly Drawing.

Figure 2: AAT4280 Evaluation Board
Component Side Layout.

Figure 3: AAT4280 Evaluation Board Solder Side Layout.
Ordering Information

<table>
<thead>
<tr>
<th>Device Option</th>
<th>Package</th>
<th>Marking¹</th>
<th>Part Number (Tape and Reel)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT4280-1</td>
<td>SOT23-6</td>
<td>COXYY</td>
<td>AAT4280IGU-1-T1</td>
</tr>
<tr>
<td>AAT4280-2</td>
<td>SOT23-6</td>
<td>BZXYY</td>
<td>AAT4280IGU-2-T1</td>
</tr>
<tr>
<td>AAT4280-3</td>
<td>SOT23-6</td>
<td>CJXYY</td>
<td>AAT4280IGU-3-T1</td>
</tr>
<tr>
<td>AAT4280-1</td>
<td>SC70JW-8</td>
<td>COXYY</td>
<td>AAT4280IJS-1-T1</td>
</tr>
<tr>
<td>AAT4280-2</td>
<td>SC70JW-8</td>
<td>BZXYY</td>
<td>AAT4280IJS-2-T1</td>
</tr>
<tr>
<td>AAT4280-3</td>
<td>SC70JW-8</td>
<td>CJXYY</td>
<td>AAT4280IJS-3-T1</td>
</tr>
</tbody>
</table>

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green™, document number SQ04-0074.

Package Information

SOT23-6

All dimensions in millimeters.

1. XYY = assembly and date code.
2. Sample stock is generally held on all part numbers listed in **BOLD**.
AAT4280
DATA SHEET
Slew Rate Controlled Load Switch

SC70JW-8

All dimensions in millimeters.

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.