General Description

The AAT1126 SwitchReg™ is a member of Skyworks' Total Power Management IC (TPMIC™) product family. It is a 1MHz step-down converter with an input voltage range of 2.7V to 5.5V and output as low as 0.6V. Its low supply current, small size, and high switching frequency make the AAT1126 the ideal choice for portable applications.

The AAT1126 is available in either a fixed version with internal feedback or a programmable version with external feedback resistors. It can deliver up to 600mA of load current while maintaining a low 25μA no load quiescent current. The 1MHz switching frequency minimizes the size of external components while keeping switching losses low. The AAT1126 feedback and control delivers excellent load regulation and transient response with a small output inductor and capacitor.

The AAT1126 is designed to maintain high efficiency throughout the operating range and provides fast turn-on time.

The AAT1126 is available in a Pb-free, space-saving SOT23-5 package and is rated over the -40°C to +85°C temperature range.

Features

- V_{IN} Range: 2.7V to 5.5V
- V_{OUT} Adjustable Down to 0.6V
 - Fixed or Adjustable Version
- Fast Turn-On Time (100μs Typical)
- 25μA No Load Quiescent Current
- Up to 97% Efficiency
- Output Current Up to 600mA
- 1MHz Switching Frequency
- Soft Start
- Over-Temperature Protection
- Current Limit Protection
- 100% Duty Cycle Low-Dropout Operation
- 0.1μA Shutdown Current
- SOT23-5 Package
- Temperature Range: -40°C to +85°C

Applications

- Cellular Phones
- Digital Cameras
- Handheld Instruments
- Microprocessor / DSP Core / IO Power
- PDAs and Handheld Computers
- USB Devices

Typical Application (Fixed Output Voltage)
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>Enable pin.</td>
</tr>
<tr>
<td>3</td>
<td>LX</td>
<td>Switching node. Connect the inductor to this pin. It is internally connected to the drain of both high- and low-side MOSFETs.</td>
</tr>
<tr>
<td>4</td>
<td>OUT</td>
<td>Feedback input pin. This pin is connected either directly to the converter output or to an external resistive divider for an adjustable output.</td>
</tr>
<tr>
<td>5</td>
<td>VIN</td>
<td>Input supply voltage for the converter.</td>
</tr>
</tbody>
</table>

Pin Configuration

SOT23-5
(Top View)
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>Input Voltage GND</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{LX}})</td>
<td>(L_x) to GND</td>
<td>-0.3 to (V_{\text{IN}} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{OUT}})</td>
<td>OUT to GND</td>
<td>-0.3 to (V_{\text{IN}} + 0.3)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{EN}})</td>
<td>EN to GND</td>
<td>-0.3 to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>(T_{\text{J}})</td>
<td>Operating Junction Temperature Range</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_{\text{LEAD}})</td>
<td>Maximum Soldering Temperature (at leads, 10 sec)</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.

2. Mounted on an FR4 board.

Thermal Information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{D}})</td>
<td>Maximum Power Dissipation (SOT23-5)</td>
<td>667</td>
<td>mW</td>
</tr>
<tr>
<td>(\theta_{\text{JA}})</td>
<td>Thermal Resistance (SOT23-5)</td>
<td>150</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics

$T_a = -40^\circ C$ to $+85^\circ C$, unless otherwise noted. Typical values are $T_a = 25^\circ C$, $V_{IN} = 3.6V$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>V_{IN} Rising V_{IN} Falling</td>
<td>2.7</td>
<td>2.6</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>UVLO Threshold</td>
<td>Hysteresis V_{IN} Rising V_{IN} Falling</td>
<td>100</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage Tolerance</td>
<td>$I_{OUT} = 0$ to $600mA$, $V_{IN} = 2.7V$ to $5.5V$ -3.5 $+3.5$ %</td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_{Q}</td>
<td>Quiescent Current</td>
<td>No Load, $0.6V$ Adjustable Version</td>
<td>25</td>
<td>50</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown Current</td>
<td>$EN = AGND = PGND$</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>$I_{OUT,X}$</td>
<td>Maximum Load Current</td>
<td>$600mA$</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$R_{DS(ON)H}$</td>
<td>High Side Switch On Resistance</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>$R_{DS(ON)L}$</td>
<td>Low Side Switch On Resistance</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>I_{LXLEAK}</td>
<td>LX Leakage Current</td>
<td>$V_{IN} = 5.5V$, $V_{LX} = 0$ to V_{IN}, $EN = GND$</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>$\Delta V_{LINereg}$</td>
<td>Line Regulation</td>
<td>$V_{IN} = 2.7V$ to $5.5V$</td>
<td>0.5</td>
<td></td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Out Threshold Voltage Accuracy</td>
<td>$0.6V$ Output, No Load; $T_a = 25^\circ C$</td>
<td>591</td>
<td>600</td>
<td>609</td>
<td>mV</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Out Leakage Current</td>
<td>$0.6V$ Output</td>
<td>0.2</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>Out Impedance</td>
<td>$>0.6V$ Output</td>
<td>250</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>T_s</td>
<td>Start-Up Time</td>
<td>From Enable to Output Regulation</td>
<td>100</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>F_{OSC}</td>
<td>Oscillator Frequency</td>
<td>$T_a = 25^\circ C$</td>
<td>0.7</td>
<td>1.0</td>
<td>1.5</td>
<td>MHz</td>
</tr>
<tr>
<td>T_{SD}</td>
<td>Over-Temperature Shutdown Threshold</td>
<td>$T_a = 25^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>T_{HYS}</td>
<td>Over-Temperature Shutdown Hysteresis</td>
<td>$T_a = 25^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>$V_{EN(L)}$</td>
<td>Enable Threshold Low</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{EN(H)}$</td>
<td>Enable Threshold High</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{EN}</td>
<td>Input Low Current</td>
<td>$V_{EN} = V_{FB} = 5.5V$</td>
<td>-1.0</td>
<td>1.0</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

1. The AAT1126 is guaranteed to meet performance specifications over the $-40^\circ C$ to $+85^\circ C$ operating temperature range and is assured by design, characterization, and correlation with statistical process controls.
Typical Characteristics

Efficiency vs. Load
(V_{OUT} = 3.3V; L = 10\,\mu H)

![Efficiency graph](image)

- **Output Current (mA)**: 0.1 to 1000
- **Efficiency (%)**:
 - VIN = 3.9V: Efficiency varies from 70% to 90%
 - VIN = 4.2V: Efficiency varies from 80% to 95%

DC Regulation
(V_{OUT} = 3.3V; L = 10\,\mu H)

![DC Regulation graph](image)

- **Output Current (mA)**: 0.1 to 1000
- **Output Error (%)**:
 - VIN = 4.2V: Error varies from -0.5% to -2%
 - VIN = 3.9V: Error varies from -2% to -4%

Efficiency vs. Load
(V_{OUT} = 2.5V; L = 10\,\mu H)

![Efficiency graph](image)

- **Output Current (mA)**: 0.1 to 1000
- **Efficiency (%)**:
 - VIN = 3.3V: Efficiency varies from 60% to 80%
 - VIN = 3.6V: Efficiency varies from 70% to 90%

DC Regulation
(V_{OUT} = 2.5V; L = 10\,\mu H)

![DC Regulation graph](image)

- **Output Current (mA)**: 0.1 to 1000
- **Output Error (%)**:
 - VIN = 3.6V: Error varies from -1% to -3%
 - VIN = 3.3V: Error varies from -3% to -5%

Efficiency vs. Load
(V_{OUT} = 1.5V; L = 4.7\,\mu H)

![Efficiency graph](image)

- **Output Current (mA)**: 0.1 to 1000
- **Efficiency (%)**:
 - VIN = 3.6V: Efficiency varies from 50% to 70%
 - VIN = 2.7V: Efficiency varies from 80% to 95%

DC Regulation
(V_{OUT} = 1.5V; L = 4.7\,\mu H)

![DC Regulation graph](image)

- **Output Current (mA)**: 0.1 to 1000
- **Output Error (%)**:
 - VIN = 4.2V: Error varies from -1% to -3%
 - VIN = 3.6V: Error varies from -3% to -5%

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com

2019768 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 15, 2013
Typical Characteristics

Frequency vs. Input Voltage
\((V_{\text{out}} = 1.8V) \)

Output Voltage Error vs. Temperature
\((V_{\text{in}} = 3.6V; V_{\text{o}} = 2.5V) \)

Switching Frequency vs. Temperature
\((V_{\text{in}} = 3.6V; V_{\text{o}} = 1.5V) \)

Quiescent Current vs. Input Voltage
\((V_{\text{o}} = 1.8V) \)

P-Channel \(R_{DS(ON)} \) vs. Input Voltage

N-Channel \(R_{DS(ON)} \) vs. Input Voltage
Typical Characteristics

Load Transient Response
(30mA - 300mA; VIN = 3.6V; VOUT = 1.5V; C1 = 22μF)

![Load Transient Response Graph](image)

Load Transient Response
(30mA - 300mA; VIN = 3.6V; VOUT = 2.5V; C1 = 22μF)

![Load Transient Response Graph](image)

Line Transient
(VOUT = 2.5V @ 500mA)

![Line Transient Graph](image)

Line Regulation
(VOUT = 1.5V)

![Line Regulation Graph](image)

Output Ripple
(VIN = 3.6V; VOUT = 1.8V; 400mA)

![Output Ripple Graph](image)

Soft Start
(VIN = 3.6V; VOUT = 1.5V; L = 4.7μH)

![Soft Start Graph](image)
Functional Description

The AAT1126 is a high performance 600mA 1MHz monolithic step-down converter. It has been designed with the goal of minimizing external component size and optimizing efficiency over the complete load range. Apart from the small bypass input capacitor, only a small L-C filter is required at the output. Typically, a 4.7μH inductor and a 10μF ceramic capacitor are recommended (see Table of Values).

The fixed output version requires only three external power components (C_{IN}, C_{OUT}, and L). The adjustable version can be programmed with external feedback to any voltage, ranging from 0.6V to the input voltage. An additional feed-forward capacitor can also be added to the external feedback to provide improved transient response (see Figure 1).

At dropout, the converter duty cycle increases to 100% and the output voltage tracks the input voltage minus the $R_{DS(on)}$ drop of the P-channel high-side MOSFET.

The input voltage range is 2.7V to 5.5V. The converter efficiency has been optimized for all load conditions, ranging from no load to heavy load.

The internal error amplifier and compensation provides excellent transient response, load, and line regulation. Soft start eliminates any output voltage overshoot when the enable or the input voltage is applied.
Control Loop

The AAT1126 is a peak current mode step-down converter. The current through the P-channel MOSFET (high side) is sensed for current loop control, as well as short circuit and overload protection. A fixed slope compensation signal is added to the sensed current to maintain stability for duty cycles greater than 50%. The peak current mode loop appears as a voltage-programmed current source in parallel with the output capacitor.

The output of the voltage error amplifier programs the current mode loop for the necessary peak switch current to force a constant output voltage for all load and line conditions. Internal loop compensation terminates the transconductance voltage error amplifier output. For fixed voltage versions, the error amplifier reference voltage is internally set to program the converter output voltage. For the adjustable output, the error amplifier reference is fixed at 0.6V.

Soft Start / Enable

Soft start limits the current surge seen at the input and eliminates output voltage overshoot. When pulled low, the enable input forces the AAT1126 into a low-power, non-switching state. The total input current during shutdown is less than 1μA. The AAT1126 provides turn-on within 100μs (typical) of the enable input transition.

Current Limit and Over-Temperature Protection

For overload conditions, the peak input current is limited. To minimize power dissipation and stresses under current limit and short-circuit conditions, switching is terminated after entering current limit for a series of pulses. Switching is terminated for seven consecutive clock cycles after a current limit has been sensed for a series of four consecutive clock cycles.

Thermal protection completely disables switching when internal dissipation becomes excessive. The junction over-temperature threshold is 140°C with 15°C of hysteresis. Once an over-temperature or over-current fault conditions is removed, the output voltage automatically recovers.

Under-Voltage Lockout

Internal bias of all circuits is controlled via the VIN input. Under-voltage lockout (UVLO) guarantees sufficient VIN bias and proper operation of all internal circuitry prior to activation.
Applications Information

Inductor Selection

The step-down converter uses peak current mode control with slope compensation to maintain stability for duty cycles greater than 50%. The output inductor value must be selected so the inductor current down slope meets the internal slope compensation requirements. The internal slope compensation for the adjustable and low-voltage fixed versions of the AAT1126 is 0.24A/μs. This equates to a slope compensation that is 75% of the inductor current down slope for a 1.5V output and 4.7μH inductor.

\[
m = \frac{0.75 \cdot V_o}{L} = \frac{0.75 \cdot 1.5V}{4.7 \mu H} = 0.24 \frac{A}{\mu s}
\]

This is the internal slope compensation for the adjustable (0.6V) version or low-voltage fixed versions. When externally programming the 0.6V version to 2.5V, the calculated inductance is 7.5μH.

\[
L = \frac{0.75 \cdot V_o}{m} = \frac{0.75 \cdot V_o}{0.24A/\mu s} = 3 \frac{\mu s}{A} \cdot V_o
\]

\[
= 3 \frac{\mu s}{A} \cdot 2.5V = 7.5\mu H
\]

In this case, a standard 10μH value is selected.

For high-voltage fixed versions (2.5V and above), \(m = 0.48A/\mu s \). Table 1 displays inductor values for the AAT1126 fixed and adjustable options.

Manufacturer’s specifications list both the inductor DC current rating, which is a thermal limitation, and the peak current rating, which is determined by the saturation characteristics. The inductor should not show any appreciable saturation under normal load conditions. Some inductors may meet the peak and average current ratings yet result in excessive losses due to a high DCR. Always consider the losses associated with the DCR and its effect on the total converter efficiency when selecting an inductor.

The 4.7μH CDRH3D16 series inductor selected from Sumida has a 105mΩ DCR and a 900mA DC current rating. At full load, the inductor DC loss is 17mW which gives a 2.8% loss in efficiency for a 400mA, 1.5V output.

Input Capacitor

Select a 4.7μF to 10μF X7R or X5R ceramic capacitor for the input. To estimate the required input capacitor size, determine the acceptable input ripple level (\(V_{PP} \)) and solve for \(C \). The calculated value varies with input voltage and is a maximum when \(V_{IN} \) is double the output voltage.

\[
C_{IN} = \frac{\frac{V_o}{V_{IN}} \cdot \left(1 - \frac{V_o}{V_{IN}}\right)}{\frac{V_{PP}}{I_o} \cdot \text{ESR} \cdot F_S}
\]

\[
V_o \frac{1}{V_{IN}} \cdot \left(1 - \frac{V_o}{V_{IN}}\right) = \frac{1}{4} \quad \text{for} \quad V_{IN} = 2 \cdot V_o
\]

\[
C_{IN(MIN)} = \frac{1}{\left(\frac{V_{PP}}{I_o} \cdot \text{ESR}\right) \cdot 4 \cdot F_S}
\]

Always examine the ceramic capacitor DC voltage coefficient characteristics when selecting the proper value. For example, the capacitance of a 10μF, 6.3V, X5R ceramic capacitor with 5.0V DC applied is actually about 6μF.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Output Voltage</th>
<th>Inductor</th>
<th>Slope Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6V Adjustable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With External Resistive Divider</td>
<td>0.6V to 2.0V</td>
<td>4.7μH</td>
<td>0.24A/μs</td>
</tr>
<tr>
<td></td>
<td>2.5V to 3.3V</td>
<td>10μH</td>
<td>0.24A/μs</td>
</tr>
<tr>
<td>Fixed Output</td>
<td>0.6V to 2.0V</td>
<td>4.7μH</td>
<td>0.24A/μs</td>
</tr>
<tr>
<td></td>
<td>2.5V to 3.3V</td>
<td>4.7μH</td>
<td>0.48A/μs</td>
</tr>
</tbody>
</table>

Table 1: Inductor Values.

The maximum input capacitor RMS current is:

\[
I_{RMS} = I_o \cdot \sqrt{\frac{V_o}{V_{IN}} \cdot \left(1 - \frac{V_o}{V_{IN}}\right)}
\]

The input capacitor RMS ripple current varies with the input and output voltage and will always be less than or equal to half of the total DC load current.

\[
\sqrt{\frac{V_o}{V_{IN}} \cdot \left(1 - \frac{V_o}{V_{IN}}\right)} = \sqrt{D \cdot (1 - D)} = \sqrt{0.5^2} = \frac{1}{2}
\]
for $V_{IN} = 2 \cdot V_O$

$$I_{RMS(\text{MAX})} = \frac{I_O}{2}$$

The term $\frac{V_O}{V_{IN}} \left(1 - \frac{V_O}{V_{IN}}\right)$ appears in both the input voltage ripple and input capacitor RMS current equations and is a maximum when V_O is twice V_{IN}. This is why the input voltage ripple and the input capacitor RMS current ripple are a maximum at 50% duty cycle.

The input capacitor provides a low impedance loop for the edges of pulsed current drawn by the AAT1126. Low ESR/ESL X7R and X5R ceramic capacitors are ideal for this function. To minimize stray inductance, the capacitor should be placed as closely as possible to the IC. This keeps the high frequency content of the input current localized, minimizing EMI and input voltage ripple.

The proper placement of the input capacitor (C2) can be seen in the evaluation board layout in Figure 2.
A laboratory test set-up typically consists of two long wires running from the bench power supply to the evaluation board input voltage pins. The inductance of these wires, along with the low-ESR ceramic input capacitor, can create a high Q network that may affect converter performance. This problem often becomes apparent in the form of excessive ringing in the output voltage during load transients. Errors in the loop phase and gain measurements can also result.

Since the inductance of a short PCB trace feeding the input voltage is significantly lower than the power leads from the bench power supply, most applications do not exhibit this problem.

In applications where the input power source lead inductance cannot be reduced to a level that does not affect the converter performance, a high ESR tantalum or aluminum electrolytic should be placed in parallel with the low ESR, ESL bypass ceramic. This dampens the high Q network and stabilizes the system.

Output Capacitor

The output capacitor limits the output ripple and provides holdup during large load transitions. A 22μF X5R or X7R ceramic capacitor provides sufficient bulk capacitance to stabilize the output during large load transitions and has the ESR and ESL characteristics necessary for low output ripple.

The output voltage droop due to a load transient is dominated by the capacitance of the ceramic output capacitor. During a step increase in load current, the ceramic output capacitor alone supplies the load current until the loop responds. Within two or three switching cycles, the loop responds and the inductor current increases to match the load current demand. The relationship of the output voltage droop during the three switching cycles to the output capacitance can be estimated by:

\[
C_{OUT} = \frac{3 \cdot \Delta I_{LOAD}}{V_{DROOP} \cdot F_S}
\]

Once the average inductor current increases to the DC load level, the output voltage recovers. The above equation establishes a limit on the minimum value for the output capacitor with respect to load transients.

The internal voltage loop compensation limits the minimum output capacitor value to 10μF. This is due to its effect on the loop crossover frequency (bandwidth), phase margin, and gain margin. Increased output capacitance will reduce the crossover frequency with greater phase margin.

The maximum output capacitor RMS ripple current is given by:

\[
I_{RMS(MAX)} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{V_{OUT} \cdot (V_{IN(MAX)} - V_{OUT})}{L \cdot F \cdot V_{IN(MAX)}}
\]

Dissipation due to the RMS current in the ceramic output capacitor ESR is typically minimal, resulting in less than a few degrees rise in hot-spot temperature.

Adjustable Output Resistor Selection

For applications requiring an adjustable output voltage, the 0.6V version can be externally programmed. Resistors R1 and R2 of Figure 5 program the output to regulate at a voltage higher than 0.6V. To limit the bias current required for the external feedback resistor string while maintaining good noise immunity, the minimum suggested value for R2 is 59kΩ. Although a larger value will further reduce quiescent current, it will also increase the impedance of the feedback node, making it more sensitive to external noise and interference. Table 2 summarizes the resistor values for various output voltages with R2 set to either 59kΩ for good noise immunity or 221kΩ for reduced no load input current.

\[
R1 = \left(\frac{V_{OUT}}{V_{REF}} - 1 \right) \cdot R2 = \left(\frac{1.5V}{0.6V} - 1 \right) \cdot 59k\Omega = 88.5k\Omega
\]

The adjustable version of the AAT1126, combined with an external feedforward capacitor (C4 in Figure 1), delivers enhanced transient response for extreme pulsed load applications. The addition of the feedforward capacitor typically requires a larger output capacitor C1 for stability.
Thermal Calculations

There are three types of losses associated with the AAT1126 step-down converter: switching losses, conduction losses, and quiescent current losses. Conduction losses are associated with the $R_{DS(ON)}$ characteristics of the power output switching devices. Switching losses are dominated by the gate charge of the power output switching devices. At full load, assuming continuous conduction mode (CCM), a simplified form of the losses is given by:

$$P_{TOTAL} = \frac{I_q^2 \cdot (R_{DS(ON)(HS)} \cdot V_O + R_{DS(ON)(LS)} \cdot [V_{IN} - V_O])}{V_{IN}}$$

$$+ (t_{SW} \cdot f \cdot I_O + I_Q) \cdot V_{IN}$$

I_Q is the step-down converter quiescent current. The term t_{SW} is used to estimate the full load step-down converter switching losses.

For the condition where the step-down converter is in dropout at 100% duty cycle, the total device dissipation reduces to:

$$P_{TOTAL} = I_q^2 \cdot R_{DS(ON)(HS)} + I_Q \cdot V_{IN}$$

Since $R_{DS(ON)}$, quiescent current, and switching losses all vary with input voltage, the total losses should be investigated over the complete input voltage range.

Given the total losses, the maximum junction temperature can be derived from the θ_{JA} for the SOT23-5 package which is 150°C/W.

$$T_{J(MAX)} = P_{TOTAL} \cdot \theta_{JA} + T_{AMB}$$

Table 2: Adjustable Resistor Values For Use With 0.6V Step-Down Converter.

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>$R2 = 59,k\Omega$</th>
<th>$R2 = 221,k\Omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>19.6</td>
<td>75</td>
</tr>
<tr>
<td>0.9</td>
<td>29.4</td>
<td>113</td>
</tr>
<tr>
<td>1.0</td>
<td>39.2</td>
<td>150</td>
</tr>
<tr>
<td>1.1</td>
<td>49.9</td>
<td>187</td>
</tr>
<tr>
<td>1.2</td>
<td>59.0</td>
<td>221</td>
</tr>
<tr>
<td>1.3</td>
<td>68.1</td>
<td>261</td>
</tr>
<tr>
<td>1.4</td>
<td>78.7</td>
<td>301</td>
</tr>
<tr>
<td>1.5</td>
<td>88.7</td>
<td>332</td>
</tr>
<tr>
<td>1.8</td>
<td>118</td>
<td>442</td>
</tr>
<tr>
<td>1.85</td>
<td>124</td>
<td>464</td>
</tr>
<tr>
<td>2.0</td>
<td>137</td>
<td>523</td>
</tr>
<tr>
<td>2.5</td>
<td>187</td>
<td>715</td>
</tr>
<tr>
<td>3.3</td>
<td>267</td>
<td>1000</td>
</tr>
</tbody>
</table>
Layout

The suggested PCB layout for the AAT1126 is shown in Figures 2, 3, and 4. The following guidelines should be used to help ensure a proper layout.

1. The input capacitor (C2) should connect as closely as possible to VIN (Pin 3) and GND (Pin 1).
2. C1 and L1 should be connected as closely as possible. The connection of L1 to the LX pin should be as short as possible.
3. The feedback trace or OUT pin (Pin 4) should be separate from any power trace and connect as closely as possible to the load point. Sensing along a high-current load trace will degrade DC load regulation. If external feedback resistors are used, they should be placed as closely as possible to the OUT pin (Pin 4) to minimize the length of the high impedance feedback trace.
4. The resistance of the trace from the load return to GND (Pin 1) should be kept to a minimum. This will help to minimize any error in DC regulation due to differences in the potential of the load return and the AAT1126 ground.
Step-Down Converter Design Example

Specifications

- $V_O = 1.8V @ 400mA$ (adjustable using 0.6V version), Pulsed Load $\Delta I_{LOAD} = 300mA$
- $V_{IN} = 2.7V$ to $4.2V$ (3.6V nominal)
- $F_S = 1.0MHz$
- $T_{AMB} = 85^°C$

1.8V Output Inductor

$$ L_1 = 3 \frac{\mu\text{sec}}{A} \cdot V_{O2} = 3 \frac{\mu\text{sec}}{A} \cdot 1.8V = 5.4\mu\text{H} \quad \text{(see Table 1)} $$

For Sumida inductor CDRH3D16, 4.7 μH, DCR = 105mΩ.

$$ \Delta I_{L1} = \frac{V_O}{L_1 \cdot F} \left(1 - \frac{V_O}{V_{IN}}\right) = \frac{1.8V}{4.7\mu\text{H} \cdot 1.0MHz} \cdot 1 - \left(\frac{1.8V}{4.2V}\right) = 218mA $$

$$ I_{PKL1} = I_O + \frac{\Delta I_{L1}}{2} = 0.4A + 0.11A = 0.51A $$

$$ P_{L1} = I_O^2 \cdot \text{DCR} = 0.4A^2 \cdot 105m\Omega = 17mW $$

1.8V Output Capacitor

$$ V_{DROOP} = 0.05V $$

$$ C_{OUT} = \frac{3 \cdot \Delta I_{LOAD}}{V_{DROOP} \cdot F_S} = \frac{3 \cdot 0.3A}{0.05V \cdot 1MHz} = 18.0\mu\text{F} $$

$$ I_{RMS} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{(V_O) \cdot (V_{IN(MAX)} - V_O)}{L_1 \cdot F \cdot V_{IN(MAX)}} = \frac{1}{2 \cdot \sqrt{3}} \cdot \frac{1.8V \cdot (4.2V - 1.8V)}{4.7\mu\text{H} \cdot 1.0MHz \cdot 4.2V} = 63m\text{Arms} $$

$$ P_{esr} = \text{esr} \cdot I_{RMS}^2 = 5m\Omega \cdot (63mA)^2 = 20\mu\text{W} $$
Input Capacitor

Input Ripple $V_{pp} = 25mV$

$$\begin{align*}
C_{in} &= \frac{1}{\left(\frac{V_{pp}}{I_o} - ESR\right) \cdot 4 \cdot F_S} = \frac{1}{\left(\frac{25mV}{0.4A} - 5m\Omega\right) \cdot 4 \cdot 1MHz} = 4.75\mu F \\
I_{RMS} &= \frac{I_o}{2} = 0.2Arms \\
P &= \text{esr} \cdot I_{RMS}^2 = 5m\Omega \cdot (0.2A)^2 = 0.2mW
\end{align*}$$

AAT1126 Losses

$$\begin{align*}
P_{TOTAL} &= I_o^2 \cdot \left(R_{DSON(HS)} \cdot V_o + R_{DSON(LS)} \cdot [V_{IN} - V_o] \right) \\
&\quad + (t_s \cdot F \cdot I_o + I_o) \cdot V_{IN} \\
&= 0.4^2 \cdot (0.45\Omega \cdot 1.8V + 0.4\Omega \cdot [4.2V - 1.8V]) \\
&\quad + (5ns \cdot 1.0MHz \cdot 0.4A + 50\mu A) \cdot 4.2V = 76mW \\
T_{J(MAX)} &= T_{AMB} + \Theta_{JA} \cdot P_{LOSS} = 85°C + (150°C/W) \cdot 76mW = 96.4°C
\end{align*}$$
AAT1126

600mA, 1MHz Step-Down Converter

Adjusted Version (0.6V device)

<table>
<thead>
<tr>
<th>V<sub>OUT</sub> (V)</th>
<th>R1 (kΩ)</th>
<th>R2 = 59kΩ</th>
<th>R1 (kΩ)</th>
<th>R2 = 221kΩ</th>
<th>L1 (μH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>19.6</td>
<td>75.0</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>29.4</td>
<td>113</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>39.2</td>
<td>150</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>49.9</td>
<td>187</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>59.0</td>
<td>221</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>68.1</td>
<td>261</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>78.7</td>
<td>301</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>88.7</td>
<td>332</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>118</td>
<td>442</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.85</td>
<td>124</td>
<td>464</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>137</td>
<td>523</td>
<td>4.7 or 6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>187</td>
<td>715</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>267</td>
<td>1000</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Evaluation Board Component Values.

Fixed Version

<table>
<thead>
<tr>
<th>V<sub>OUT</sub> (V)</th>
<th>R1 (kΩ)</th>
<th>R2 Not Used</th>
<th>L1 (μH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6-3.3V</td>
<td>0</td>
<td></td>
<td>4.7</td>
</tr>
</tbody>
</table>

Table 4: Typical Surface Mount Inductors.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Inductance (μH)</th>
<th>Max DC Current (A)</th>
<th>DCR (Ω)</th>
<th>Size (mm) LxWxH</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumida</td>
<td>CDRH3D16-4R7</td>
<td>4.7</td>
<td>0.90</td>
<td>0.11</td>
<td>4.0x4.0x1.8</td>
<td>Shielded</td>
</tr>
<tr>
<td>Sumida</td>
<td>CDRH3D16/HP-100</td>
<td>10</td>
<td>0.84</td>
<td>0.23</td>
<td>4.0x4.0x1.8</td>
<td>Shielded</td>
</tr>
<tr>
<td>Murata</td>
<td>LQH32CN4R7M33</td>
<td>4.7</td>
<td>0.65</td>
<td>0.15</td>
<td>2.5x3.2x2.0</td>
<td>Non-Shielded</td>
</tr>
<tr>
<td>Murata</td>
<td>LQH32CN4R7M53</td>
<td>4.7</td>
<td>0.65</td>
<td>0.15</td>
<td>2.5x3.2x1.55</td>
<td>Non-Shielded</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>LPO6610-472</td>
<td>4.7</td>
<td>1.10</td>
<td>0.20</td>
<td>5.5x6.6x1.0</td>
<td>1mm</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>LPO3310-472</td>
<td>4.7</td>
<td>0.80</td>
<td>0.27</td>
<td>3.3x3.3x1.0</td>
<td>1mm</td>
</tr>
<tr>
<td>Coiltronics</td>
<td>SDR10-4R7</td>
<td>4.7</td>
<td>1.53</td>
<td>0.117</td>
<td>4.5x3.6x1.0</td>
<td>1mm Shielded</td>
</tr>
<tr>
<td>Coiltronics</td>
<td>SDR10-4R7</td>
<td>4.7</td>
<td>1.30</td>
<td>0.122</td>
<td>5.7x4.4x1.0</td>
<td>1mm Shielded</td>
</tr>
<tr>
<td>Coiltronics</td>
<td>SD3118-4R7</td>
<td>4.7</td>
<td>0.98</td>
<td>0.122</td>
<td>3.1x3.1x1.85</td>
<td>Shielded</td>
</tr>
<tr>
<td>Coiltronics</td>
<td>SD18-4R7</td>
<td>4.7</td>
<td>1.77</td>
<td>0.082</td>
<td>5.2x5.2x1.8</td>
<td>Shielded</td>
</tr>
</tbody>
</table>

Table 5: Surface Mount Capacitors.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Value</th>
<th>Voltage</th>
<th>Temp. Co.</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>GRM21BR60J226ME39</td>
<td>22μF</td>
<td>6.3V</td>
<td>X5R</td>
<td>0805</td>
</tr>
<tr>
<td>Murata</td>
<td>GRM21BR60J106KE19</td>
<td>10μF</td>
<td>6.3V</td>
<td>X5R</td>
<td>0805</td>
</tr>
</tbody>
</table>

1. For reduced quiescent current R2 = 221kΩ.
Ordering Information

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Package</th>
<th>Marking</th>
<th>Part Number (Tape and Reel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. > 0.6</td>
<td>SOT23-5</td>
<td>QPXYY</td>
<td>AAT1126IGV-0.6-T1</td>
</tr>
</tbody>
</table>

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green™, document number SQ04-0074.

Package Information

SOT23-5

All dimensions in millimeters.

1. Contact Sales for other voltage options.
2. XYY = assembly and date code.
3. Sample stock is generally held on part numbers listed in BOLD.

Copyright © 2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.