DATA SHEET

SMP1325-085LF: Surface-Mount PIN Diode for High-Power Switch Applications

Applications

- Low-loss, high-power switches
- Low-distortion attenuators

Features

- Low-thermal resistance: 13 °C/W
- Suitable for 100 W continuous wave T/R switches
- Low capacitance: 0.56 pF typical @ 20 V
- Low distortion performance
- QFN (3-pin, 2 x 2 mm) package (MSL1, 260 °C per JEDEC J-STD-020)

Skyworks Green™ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green™, document number SQ04–0074.

Figure 1. SMP1325-085LF Block Diagram

Description

The SMP1325-085LF is a surface-mountable, low-capacitance silicon PIN diode designed as a shunt connected PIN diode for high-power, high-volume switch and attenuator applications from 10 MHz to beyond 6 GHz.

Maximum resistance at 100 mA is 0.5 Ω and maximum capacitance at 20 V is 0.65 pF. The combination of low junction capacitance, low parasitic inductance, low thermal resistance, and nominal 100 μm I-region width, makes the SMP1325-085LF useful in large signal switches and attenuator applications.

The device has a 4.5 W dissipation power rating, making it capable of handling more than 100 W continuous wave (CW) and 1000 W peak (1 μs pulse, 1 percent duty cycle, Tc = 85 °C) in a shunt-connected transmit/receive (T/R) switch.

Design information for high-power switches can be found in the Skyworks Application Note, Design With PIN Diodes (document number 200312).

A block diagram of the SMP1325-085LF is shown in Figure 1.
Electrical and Mechanical Specifications

The absolute maximum ratings of the SMP1325-085LF are provided in Table 1. Electrical specifications are provided in Table 2.

A plot of series resistance versus forward current is shown in Figure 2.

Table 1. SMP1325-085LF Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td>(V_R)</td>
<td>200 V</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Forward current @ 25 °C</td>
<td>(I_F)</td>
<td>200 mA</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>CW power dissipation @ 85 °C</td>
<td>(P_D)</td>
<td>4.5 W</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Peak pulse power dissipation @ 85 °C (10% duty cycle)</td>
<td></td>
<td>450 W</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{ST})</td>
<td>–65 °C</td>
<td>+200 °C</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>(T_A)</td>
<td>–40 °C</td>
<td>+150 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 2. SMP1325-085LF Electrical Specifications (Note 1)

\(T_A = +25 \, ^\circ \text{C} \) Unless Otherwise Noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse current</td>
<td>(I_R)</td>
<td>(V_R = 200 , \text{V})</td>
<td></td>
<td>10 (\mu \text{A})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>(C_T)</td>
<td>(f = 1 , \text{MHz}, , V_R = 20 , \text{V})</td>
<td>0.56</td>
<td>0.65 (\text{pF})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>(R_S)</td>
<td>(f = 100 , \text{MHz})</td>
<td></td>
<td>8 (\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 1 , \text{mA})</td>
<td></td>
<td>1.3 (\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 10 , \text{mA})</td>
<td></td>
<td>0.35 (\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 100 , \text{mA})</td>
<td></td>
<td>0.50 (\Omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(V_F)</td>
<td>(I_F = 1 , \text{mA})</td>
<td>0.65</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Carrier lifetime</td>
<td>(T_L)</td>
<td>(I_F = 10 , \text{mA})</td>
<td>5</td>
<td>(\mu \text{s})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I region width</td>
<td>(W)</td>
<td>(I_F = 10 , \text{mA})</td>
<td>100</td>
<td>(\mu \text{m})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW thermal resistance (Note 2)</td>
<td>(\theta_{JC})</td>
<td></td>
<td>13</td>
<td>(^\circ \text{C/W})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Performance is guaranteed only under the conditions listed in this table.

Note 2: Measurement based on a thermal resistance of 92 \(^\circ \text{C/W} \) for the junction-to-bottom of circuit board.
Typical Performance Characteristics
(\(T_A = 25^\circ\text{C},\) Unless Otherwise Noted)

![Graph showing Series Resistance vs Current @ 100 MHz](image)

Figure 2. Series Resistance vs Current @ 100 MHz

High-Power Switch Design Applications

The SMP1325-085LF PIN diode is designed for shunt applications such as reflective switches or shunt-diode attenuator circuits. Compared to other surface-mount packages, the design of the QFN package produces lower thermal resistance and also reduces the effects of the parasitic inductance of the anode bond wires.

A cross-sectional view of the SMP1325-085LF PIN diode is shown in Figure 3. The cathode of the die is soldered directly to the top of the exposed paddle. This paddle is composed of copper, so its thermal resistance is very low.

The copper ground paddle minimizes the total thermal resistance between the I layer, which is the location where most heat is generated under normal operation, and the surface to which the package is mounted. Minimal thermal resistance between the I layer and the external environment minimizes junction temperature.

The electrically equivalent circuit of the SMP1325-085LF PIN diode is shown in Figure 4. The inductances of pins 1 and 2, as well as the inductances of the bond wires are in series with the input and output transmission lines of the external circuit rather than the portion of the circuit that contains the shunt PIN diode. The effects of these parasitic series inductances are negligible, since they add a very small insertion loss to the shunt PIN but have no effect on the isolation that the diode produces when it is forward biased.

A cross section of the suggested printed circuit board design is shown in Figure 5. The via shown in this view is critical, both for electrical performance and for thermal performance. It is recommended that several vias should be placed under the entire footprint of the exposed paddle (pin 2) to minimize both electrical inductance to the system ground and thermal resistance to the system heat sink.
Figure 3. Cross-Sectional View of the SMP1325-085LF

Figure 4. SMP1325-085LF Electrically Equivalent Circuit

Figure 5. Cross-Sectional View of Suggested Printed Circuit Board
Package Dimensions

The PCB layout footprint for the SMP1325-085LF is shown in Figure 6. Typical part markings are shown in Figure 7. Package dimensions for the 3-pin QFN are provided in Figure 8, and Figure 9 provides the tape and reel dimensions.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SMP1325-085LF is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

Figure 6. SMP1325-085LF PCB Layout Footprint

![SMP1325-085LF PCB Layout Footprint](image)

Figure 7. Typical Part Markings (Top View)

![Typical Part Markings](image)
Figure 8. SMP1325-085LF QFN Package Dimension Drawing

Figure 9. SMP1325-085LF Tape and Reel Dimensions

Notes:
1. Carrier tape: black conductive polyethylene.
2. Cover tape material: transparent conductive HSA.
3. Cover tape size: 5.40 mm width.
4. Ten sprocket hole pitch cumulative tolerance = ±0.20 mm.
5. ESD surface resistivity is ≤ 1 x 10^10 Ohms/square per EIA, JEDEC tape and reel specification.
6. Ao and Bo measurement point to be 0.30 mm from bottom pocket.
7. All measurements are in millimeters.
Ordering Information

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Manufacturing Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP1325-085LF: Surface-Mount PIN Diode</td>
<td>SMP1325-085LF</td>
</tr>
</tbody>
</table>